434 research outputs found

    Antiproliferative Activity of Mycalin A and Its Analogues on Human Skin Melanoma and Human Cervical Cancer Cells

    Get PDF
    Mycalin A, a polybrominated C15 acetogenin isolated from the encrusting sponge Mycale rotalis, displays an antiproliferative activity on human melanoma (A375) and cervical adenocarcinoma (HeLa) cells and induces cell death by an apoptotic mechanism. Various analogues and degraded derivatives of the natural substance have been prepared. A modification of the left-hand part of the molecule generates the most active substances. A structurally simplified lactone derivative of mycalin A, lacking the C1–C3 side chain, is the most active among the synthesized compounds exhibiting a strong cytotoxicity on both A375 and HeLa cells but not but not on human dermal fibroblast (HDF) used as healthy cells. Further evidence on a recently discovered chlorochromateperiodate-catalyzed process, used to oxidise mycalin A, have been collected

    Comparative proteomic expression profile in all-trans retinoic acid differentiated neuroblastoma cell line

    Get PDF
    Neuroblastoma (NB) is an infant tumor which frequently differentiates into neurons. We used twodimensional differential in-gel electrophoresis (2D-DIGE) to analyze the cytosolic and nuclear protein expression patterns of LAN-5 cells following neuronal differentiating agent all-trans-retinoic acid treatment. We identified several candidate proteins, from which Gβ2 and Prefoldin 3 may have a role on NB development. These results strength the use of proteomics to discover new putative protein targets in cancer. Keywords

    Can tDCS enhance item-specific effects and generalization after linguistically motivated aphasia therapy for verbs?

    Get PDF
    Background: Aphasia therapy focusing on abstract properties of language promotes both item-specific effects and generalization to untreated materials. Neuromodulation with transcranial Direct Current Stimulation (tDCS) has been shown to enhance item-specific improvement, but its potential to enhance generalization has not been systematically investigated. Here, we test the efficacy of ACTION (a linguistically motivated protocol) and tDCS in producing item-specific and generalized improvement in aphasia. Method: Nine individuals with post-stroke aphasia participated in this study. Participants were pre-tested with a diagnostic language battery and a cognitive screening. Experimental tasks were administered over multiple baselines. Production of infinitives, of finite verbs and of full sentences were assessed before and after each treatment phase. Nonword repetition was used as a control measure. Each subject was treated in two phases. Ten daily 1-h treatment sessions were provided per phase, in a double-blind, cross-over design. Linguistically-motivated language therapy focusing on verb inflection and sentence construction was provided in both phases. Each session began with 20 min of real or sham tDCS. Stimulation site was determined individually, based on MRI scans. Results: Group data showed improved production of treated and untreated verbs, attesting the efficacy of behavioral treatment, and its potential to yield generalization. Each individual showed significant item-specific improvement. Generalization occurred in the first phase of treatment for all subjects, and in the second phase for two subjects. Stimulation effects at the group level were significant for treated and untreated verbs altogether, but a ceiling effect for Sham cannot be excluded, as scores between real tDCS and Sham differed only before treatment. Conclusion: Our data demonstrate the efficacy of ACTION and suggest that tDCS may enhance both item-specific effects and generalization.17 page(s

    Single layer graphene film by ethanol chemical vapor deposition: Highly efficient growth and clean transfer method

    Get PDF
    The choice of ethanol (C2H5OH) as carbon source in the Chemical Vapor Deposition (CVD) of graphene on copper foils can be considered as an attractive alternative among the commonly used hydrocarbons, such as methane (CH4) [1]. Ethanol, a safe, low cost and easy handling liquid precursor, offers fast and efficient growth kinetics with the synthesis of fullyformed graphene films in just few seconds [2]. In previous studies of graphene growth from ethanol, various research groups explored temperature ranges lower than 1000 °C, usually reported for methane-assisted CVD. In particular, the 650–850 °C and 900 °C ranges were investigated, respectively for 5 and 30 min growth time [3, 4]. Recently, our group reported the growth of highly-crystalline, few-layer graphene by ethanol-CVD in hydrogen flow (1– 100 sccm) at high temperatures (1000–1070 °C) using growth times typical of CH4-assisted synthesis (10–30 min) [5]. Furthermore, a synthesis time between 20 and 60 s in the same conditions was explored too. In such fast growth we demonstrated that fully-formed graphene films can be grown by exposing copper foils to a low partial pressure of ethanol (up to 2 Pa) in just 20 s [6] and we proposed that the rapid growth is related to an increase of the Cu catalyst efficiency due weak oxidizing nature of ethanol. Thus, the employment of such liquid precursor, in small concentrations, together with a reduced time of growth and very low pressure leads to highly efficient graphene synthesis. By this way, the complete coverage of a copper catalyst surface with high spatial uniformity can be obtained in a considerably lower time than when using methane

    Qualitative versus automatic evaluation of CT perfusion parameters in acute posterior circulation ischaemic stroke

    Get PDF
    Purpose To compare the diagnostic accuracy (ACC) in the detection of acute posterior circulation strokes between qualitative evaluation of software-generated colour maps and automatic assessment of CT perfusion (CTP) parameters. Methods Were retrospectively collected 50 patients suspected of acute posterior circulation stroke who underwent to CTP (GE “Lightspeed”, 64 slices) within 24 h after symptom onset between January 2016 and December 2018. The Posterior circulation-Acute Stroke Prognosis Early CT Score (pc-ASPECTS) was used for quantifying the extent of ischaemic areas on non-contrast (NC)CT and colour-coded maps generated by CTP4 (GE) and RAPID (iSchemia View) software. Final pc-ASPECTS was calculated on follow-up NCCT and/or MRI (Philips Intera 3.0 T or Philips Achieva Ingenia 1.5 T). RAPID software also elaborated automatic quantitative mismatch maps. Results By qualitative evaluation of colour-coded maps, MTT-CTP4D and Tmax-RAPID showed the highest sensitivity (SE) (88.6% and 90.9%, respectively) and ACC (84% and 88%, respectively) compared with the other perfusion parameters (CBV, CBF). Baseline NCCT and CBF provided by RAPID quantitative perfusion mismatchmaps had the lowest SE (29.6%and 6.8%, respectively) and ACC (38% and 18%, respectively). CBF and Tmax assessment provided by quantitative RAPID perfusion mismatch maps showed significant lower SE and ACC than qualitative evaluation. No significant differences were found between the pc-ASPECTSs assessed on colour-coded MTT and Tmax maps neither between the scores assessed on colourcoded CBV-CTP4D and CBF-RAPID maps. Conclusion Qualitative analysis of colour-codedmaps resultedmore sensitive and accurate in the detection of ischaemic changes than automatic quantitative analysis

    Proteomic Analysis of Sera from Common Variable Immunodeficiency Patients Undergoing Replacement Intravenous Immunoglobulin Therapy

    Get PDF
    Common variable immunodeficiency is the most common form of symptomatic primary antibody failure in adults and children. Replacement immunoglobulin is the standard treatment of these patients. By using a differential proteomic approach based on 2D-DIGE, we examined serum samples from normal donors and from matched, naive, and immunoglobulin-treated patients. The results highlighted regulated expression of serum proteins in naive patients. Among the identified proteins, clusterin/ApoJ serum levels were lower in naive patients, compared to normal subjects. This finding was validated in a wider collection of samples from newly enrolled patients. The establishment of a cellular system, based on a human hepatocyte cell line HuH7, allowed to ascertain a potential role in the regulation of CLU gene expression by immunoglobulins

    Wing structure of the next-generation civil tiltrotor: From concept to preliminary design

    Get PDF
    The main objective of this paper is to describe a methodology to be applied in the preliminary design of a tiltrotor wing based on previously developed conceptual design methods. The reference vehicle is the Next-Generation Civil Tiltrotor Technology Demonstrator (NGCTR-TD) developed by Leonardo Helicopters within the Clean Sky research program framework. In a previous work by the authors, based on the specific requirements (i.e., dynamics, strength, buckling, functional), the first iteration of design was aimed at finding a wing structure with a minimized structural weight but at the same time strong and stiff enough to comply with sizing loads and aeroelastic stability in the flight envelope. Now, the outcome from the first design loop is used to build a global Finite Element Model (FEM), to be used for a multi-objective optimization performed by using a commercial software environment. In other words, the design strategy, aimed at finding a first optimal solution in terms of the thickness of composite components, is based on a two-level optimization. The first-level optimization is performed with engineering models (non-FEA-based), and the second-level optimization, discussed in this paper, within an FEA environment. The latter is shown to provide satisfactory results in terms of overall wing weight, and a zonal optimization of the composite parts, which is the starting point of an engineered model and a detailed FEM (beyond the scope of the present work), which will also take into account manufacturing, assembly, installation, accessibility and maintenance constraints

    Aging in multiple sclerosis: from childhood to old age, etiopathogenesis, and unmet needs: a narrative review

    Get PDF
    Multiple sclerosis (MS) primarily affects adult females. However, in the last decades, rising incidence and prevalence have been observed for demographic extremes, such as pediatric-onset MS (POMS; occurring before 18 years of age) and late-onset MS (corresponding to an onset above 50 years). These categories show peculiar clinical-pathogenetic characteristics, aging processes and disease courses, therapeutic options, and unmet needs. Nonetheless, several open questions are still pending. POMS patients display an important contribution of multiple genetic and environmental factors such as EBV, while in LOMS, hormonal changes and pollution may represent disease triggers. In both categories, immunosenescence emerges as a pathogenic driver of the disease, particularly for LOMS. In both populations, patient and caregiver engagement are essential from the diagnosis communication to early treatment of disease-modifying therapy (DMTs), which in the elderly population appears more complex and less proven in terms of efficacy and safety. Digital technologies (e.g., exergames and e-training) have recently emerged with promising results, particularly in treating and following motor and cognitive deficits. However, this offer seems more feasible for POMS, being LOMS less familiar with digital technology. In this narrative review, we discuss how the aging process influences the pathogenesis, disease course, and therapeutic options of both POMS and LOMS. Finally, we evaluate the impact of new digital communication tools, which greatly interest the current and future management of POMS and LOMS patients

    Combination of inositol and alpha lipoic acid in metabolic syndrome-affected women: a randomized placebo-controlled trial

    Get PDF
    Inositol has been reported to improve insulin sensitivity since it works as a second messenger achieving insulin-like effects on metabolic enzymes. The aim of this study was to evaluate the inositol and alpha lipoic acid combination effectiveness on metabolic syndrome features in postmenopausal women at risk of breast cancer

    Metabolic syndrome-breast cancer link varies by intrinsic molecular subtype

    Get PDF
    Metabolic syndrome (MS) has been shown to increase the risk of breast cancer. Existing data suggest that the strength of metabolic syndrome-breast cancer link varies by intrinsic molecular subtype, but results from worldwide literature are controversial. Primary endpoint of the study was to assess whether MS is a predictor of specific breast cancer (BC) subtype. Secondary endpoint was to determine whether components of MS can individually increase the risk of specific breast cancer subtype
    corecore