1,767 research outputs found
A method of determining attitude from magnetometer data only
Presented here is a new algorithm to determine attitude using only magnetometer data under the following conditions: (1) internal torques are known and (2) external torques are negligible. Torque-free rotation of a spacecraft in thruster firing acquisition phase and its magnetic despin in the B-dot mode give typical examples of such situations. A simple analytical formula has been derived in the limiting case of a spacecraft rotating with constant angular velocity. The formula has been tested using low-frequency telemetry data for the Earth Radiation Budget Satellite (ERBS) under normal conditions. Observed small oscillation of body-fixed components of the angular velocity vector near their mean values result in relatively minor errors of approximately 5 degrees. More significant errors come from processing digital magnetometer data. Higher resolution of digitized magnetometer measurements would significantly improve the accuracy of this deterministic scheme. Tests of the general version of the developed algorithm for a free-rotating spacecraft and for the B-dot mode are in progress
Magnetotransport in the CeIrIn system: The influence of antiferromagnetic fluctuations
We present an overview of magnetotransport measurements on the heavy-fermion
superconductor CeIrIn. Sensitive measurements of the Hall effect and
magnetoresistance (MR) are used to elucidate the low temperature phase diagram
of this system. The normal-state magnetotransport is highly anomalous, and
experimental signatures of a pseudogap-like precursor state to
superconductivity as well as evidence for two distinct scattering times
governing the Hall effect and the MR are observed. Our observations point out
the influence of antiferromagnetic fluctuations on the magnetotransport in this
class of materials. The implications of these findings, both in the context of
unconventional superconductivity in heavy-fermion systems as well as in
relation to the high temperature superconducting cuprates are discussed
Large zero-field cooled exchange-bias in bulk Mn2PtGa
We report a large exchange-bias (EB) effect after zero-field cooling the new
tetragonal Heusler compound Mn2PtGa from the paramagnetic state. The
first-principle calculation and the magnetic measurements reveal that Mn2PtGa
orders ferrimagnetically with some ferromagnetic (FM) inclusions. We show that
ferrimagnetic (FI) ordering is essential to isothermally induce the exchange
anisotropy needed for the zero-field cooled (ZFC) EB during the virgin
magnetization process. The complex magnetic behavior at low temperatures is
characterized by the coexistence of a field induced irreversible magnetic
behavior and a spin-glass-like phase. The field induced irreversibility
originates from an unusual first-order FI to antiferromagnetic transition,
whereas, the spin-glass like state forms due to the existence of anti-site
disorder intrinsic to the material.Comment: 5 pages, 4 figures, supplementary material included in a separate
file; accepted for publication in PR
Pressure-induced change of the pairing symmetry in superconducting CeCu2Si2
Low-temperature (T) heat-capacity measurements under hydrostatic pressure of
up to p=2.1 GPa have been performed on single-crystalline CeCu2Si2. A broad
superconducting (SC) region exists in the T-p phase diagram. In the
low-pressure region antiferromagnetic spin fluctuations and in the
high-pressure region valence fluctuations had previously been proposed to
mediate Cooper pairing. We could identify these two distinct SC regions. We
found different thermodynamic properties of the SC phase in both regions,
supporting the proposal that different mechanisms might be implied in the
formation of superconductivity.Comment: 4 pages, 5 figure
Possible re-entrant superconductivity in EuFe2As2 under pressure
We studied the temperature-pressure phase diagram of EuFe2As2 by measurements
of the electrical resistivity. The antiferromagnetic spin-density-wave
transition at T_0 associated with the FeAs-layers is continuously suppressed
with increasing pressure, while the antiferromagnetic ordering temperature of
the Eu 2+ moments seems to be nearly pressure independent up to 2.6 GPa. Above
2 GPa a sharp drop of the resistivity, \rho(T), indicates the onset of
superconductivity at T_c \approx 29.5 K. Surprisingly, on further reducing the
temperature \rho(T) is increasing again and exhibiting a maximum caused by the
ordering of the Eu 2+ moments, a behavior which is reminiscent of re-entrant
superconductivity as it is observed in the ternary Chevrel phases or in the
rare-earth nickel borocarbides
Pressure-induced ferromagnetism due to an anisotropic electronic topological transition in Fe1.08Te
A rapid and anisotropic modification of the Fermi-surface shape can be
associated with abrupt changes in crystalline lattice geometry or in the
magnetic state of a material. In this study we show that such an electronic
topological transition is at the basis of the formation of an unusual
pressure-induced tetragonal ferromagnetic phase in FeTe. Around 2 GPa,
the orthorhombic and incommensurate antiferromagnetic ground-state of
FeTe is transformed upon increasing pressure into a tetragonal
ferromagnetic state via a conventional first-order transition. On the other
hand, an isostructural transition takes place from the paramagnetic
high-temperature state into the ferromagnetic phase as a rare case of a `type
0' transformation with anisotropic properties. Electronic-structure
calculations in combination with electrical resistivity, magnetization, and
x-ray diffraction experiments show that the electronic system of FeTe
is instable with respect to profound topological transitions that can drive
fundamental changes of the lattice anisotropy and the associated magnetic
order.Comment: 7 pages, 4 figur
Validation of Data Reduction Interactive Pipeline for FORCAST on SOFIA
The Stratospheric Observatory For Infrared Astronomy (SOFIA) is a heavily modified Boeing 747SP aircraft equipped with 2.5 meter reflecting telescope. Among the suite of instruments onboard is the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). FORCAST features two cameras for short (5-25 microns) and long (25-40 microns) wavelength detection. Making infrared observations in these wavelengths presents a challenge because the telescope and sky emit background radiation magnitudes brighter than the object of interest. Because of this, the raw FORCAST data must be corrected and reduced. The Data Reduction Interactive Pipeline (DRIP) was developed to process all FORCAST data using IDL procedures. Each step of the data reduction and calibration is saved for graphic interface. On all raw data, DRIP cleans bad pixels, applies droop and non-linearity correction, does background subtraction, and jailbar removal. It can optionally do image rectification and combine chop/nod groups. Our current mission, in collaboration with the Division of Planetary Sciences group, is to validate the DRIP output and ensure that the highest quality data is provided for imaging and the astronomical community
A precursor state to unconventional superconductivity in CeIrIn
We present sensitive measurements of the Hall effect and magnetoresistance in
CeIrIn down to temperatures of 50 mK and magnetic fields up to 15 T. The
presence of a low temperature coherent Kondo state is established. Deviations
from Kohler's rule and a quadratic temperature dependence of the cotangent of
the Hall angle are reminiscent of properties observed in the high temperature
superconducting cuprates. The most striking observation pertains to the
presence of a \textit{precursor} state--characterized by a change in the Hall
mobility--that appears to precede the superconductivity in this material, in
similarity to the pseudogap in the cuprate high superconductors.Comment: 4 figure
Charge-Doping driven Evolution of Magnetism and non-Fermi-Liquid Behavior in the Filled Skutterudite CePt4Ge12-xSbx
The filled-skutterudite compound CePt4Ge12 is situated close to the border
between intermediate-valence of Ce and heavy-fermion behavior. Substitution of
Ge by Sb drives the system into a strongly correlated and ultimately upon
further increasing the Sb concentration into an antiferromagnetically ordered
state. Our experiments evidence a delicate interplay of emerging Kondo physics
and the formation of a local 4f moment. An extended non-Fermi-liquid region,
which can be understood in the framework of a Kondo-disorder model, is
observed. Band-structure calculations support the conclusion that the physical
properties are governed by the interplay of electron supply via Sb substitution
and the concomitant volume effects.Comment: 5 pages, 3 Figur
- …