552 research outputs found

    Emerging Jasmonate Transporters.

    Get PDF

    Measuring surface potential changes on leaves.

    Get PDF
    We provide here a detailed protocol for studying the changes in electrical surface potential of leaves. This method has been developed over the years by plant physiologists and is currently used in different variants in many laboratories. The protocol records surface potential changes to measure long-distance electrical signals induced by diverse stimuli such as leaf wounding or current injection. This technique can be used to determine signaling speeds, to measure the connectivity between different plant organs and-by exploiting mutant plants-to identify transporters and ion channels involved in electrical signaling. The approach can be combined with the analysis of mRNA expression and of metabolite concentrations to correlate electrical signaling to specific physiological events. We describe how to use this protocol on Arabidopsis, looking at the effects of leaf wounding; however, it is broadly applicable to other plants and can be used to study other aspects of plant physiology. After wound infliction, surface potential recording takes ∼20 min per plant

    Experimental investigation of AL2O3-EG nanofluid thermal properties and heat exposure stability in closed circuit

    Get PDF
    Paper presented at the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July, 2012.In the present study, we seek to further advance nanofluid research by simultaneously acquiring the thermal (thermal conductivity) and rheological (dynamic viscosity) properties of surfactant-free 80nm aluminium-oxide (alumina, Al2O3) spheroid gamma nanoparticle dispersions in 99.8% purity ethylene glycol (EG). Samples were diluted into 1, 2.5 and 5% by volume concentrations and pumped through an innovative purpose-developed thermally controlled closed system. Contrary to most studies which focus on individual property analysis through static burst (i.e. short term) data acquisition, concurrent data acquisition was achieved for relatively long testing periods, from 24 to 72 hours. This novel multifaceted approach also permitted to observe the long term effects of heat on colloid stability as well to insure repeatability of the data when applicable.dc201

    Domain Wall Resistance in Perpendicular (Ga,Mn)As: dependence on pinning

    Full text link
    We have investigated the domain wall resistance for two types of domain walls in a (Ga,Mn)As Hall bar with perpendicular magnetization. A sizeable positive intrinsic DWR is inferred for domain walls that are pinned at an etching step, which is quite consistent with earlier observations. However, much lower intrinsic domain wall resistance is obtained when domain walls are formed by pinning lines in unetched material. This indicates that the spin transport across a domain wall is strongly influenced by the nature of the pinning.Comment: 9 pages, 3 figure

    Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant.

    Get PDF
    The identity of the cell files necessary for the leaf-to-leaf transmission of wound signals plants has been debated for decades. In <i>Arabidopsis</i> , wounding initiates the glutamate receptor-like (GLR)-dependent propagation of membrane depolarizations that lead to defense gene activation. Using a vein extraction procedure we found pools of GLR-fusion proteins in endomembranes in phloem sieve elements and/or in xylem contact cells. Strikingly, only double mutants that eliminated GLRs from both of these spatially separated cell types strongly attenuated leaf-to-leaf electrical signaling. <i>glr3.3</i> mutants were also compromised in their defense against herbivores. Since wounding is known to cause increases in cytosolic calcium, we monitored electrical signals and Ca <sup>2+</sup> transients simultaneously. This revealed that wound-induced membrane depolarizations in the wild-type preceded cytosolic Ca <sup>2+</sup> maxima. The axial and radial distributions of calcium fluxes were differentially affected in each <i>glr</i> mutant. Resolving a debate over which cell types are necessary for electrical signaling between leaves, we show that phloem sieve elements and xylem contact cells function together in this process

    Impact of gonadectomy on maturational changes in brain volume in adolescent macaques

    Get PDF
    Adolescence is a transitional period between childhood and adulthood characterized by significant changes in global and regional brain tissue volumes. It is also a period of increasing vulnerability to psychiatric illness. The relationship between these patterns and increased levels of circulating sex steroids during adolescence remains unclear. The objective of the current study was to determine whether gonadectomy, prior to puberty, alters adolescent brain development in male rhesus macaques. Ninety-six structural MRI scans were acquired from 12 male rhesus macaques (8 time points per animal over a two-year period). Six animals underwent gonadectomy and 6 animals underwent a sham operation at 29 months of age. Mixed-effects models were used to determine whether gonadectomy altered developmental trajectories of global and regional brain tissue volumes. We observed a significant effect of gonadectomy on the developmental trajectory of prefrontal gray matter (GM), with intact males showing peak volumes around 3.5 years of age with a subsequent decline. In contrast, prefrontal GM volumes continued to increase in gonadectomized males until the end of the study. We did not observe a significant effect of gonadectomy on prefrontal white matter or on any other global or regional brain tissue volumes, though we cannot rule out that effects might be detected in a larger sample. Results suggest that the prefrontal cortex is more vulnerable to gonadectomy than other brain regions

    Evaluation of dynamic behaviour of porous media including micro-cracks by ordinary state-based peridynamics

    Get PDF
    Reliable evaluation of mechanical response in a porous solid might be challenging without any simplified assumptions. Peridynamics (PD) perform very well on a medium including pores owing to its definition, which is valid for entire domain regardless of any existed discontinuities. Accordingly, porosity is defined by randomly removing the PD interactions between the material points. As wave propagation in a solid body can be regarded as an indication of the material properties, wave propagation in porous media under an impact loading is studied first and average wave speeds are compared with the available reference results. A good agreement between the present and the reference results is achieved. Then, micro-cracks are introduced into porous media to investigate their influence on the elastic wave propagation. The micro-cracks are considered in both random and regular patterns by varying the number of cracks and their orientation. As the porosity ratio increases, it is observed that wave propagation speed drops considerably as expected. As for the cases with micro-cracks, the average wave speeds are not influenced significantly in random micro-crack configurations, while regular micro-cracks play a noticeable role in absorbing wave propagation depending on their orientation as well as the number of crack arrays in y-direction

    Characterizing the weight-glycemia phenotypes of type 1 diabetes in youth and young adulthood

    Get PDF
    Introduction Individuals with type 1 diabetes (T1D) present with diverse body weight status and degrees of glycemic control, which may warrant different treatment approaches. We sought to identify subgroups sharing phenotypes based on both weight and glycemia and compare characteristics across subgroups. Research design and methods Participants: with T1D in the SEARCH study cohort (n=1817, 6.0-30.4 years) were seen at a follow-up visit >5 years after diagnosis. Hierarchical agglomerative clustering was used to group participants based on five measures summarizing the joint distribution of body mass index z-score (BMIz) and hemoglobin A1c (HbA1c) which were estimated by reinforcement learning tree predictions from 28 covariates. Interpretation of cluster weight status and glycemic control was based on mean BMIz and HbA1c, respectively. Results: The sample was 49.5% female and 55.5% non-Hispanic white (NHW); mean±SD age=17.6±4.5 years, T1D duration=7.8±1.9 years, BMIz=0.61±0.94, and HbA1c=76±21 mmol/mol (9.1±1.9)%. Six weight-glycemia clusters were identified, including four normal weight, one overweight, and one subgroup with obesity. No cluster had a mean HbA1c <58 mmol/mol (7.5%). Cluster 1 (34.0%) was normal weight with the lowest HbA1c and comprised 85% NHW participants with the highest socioeconomic position, insulin pump use, dietary quality, and physical activity. Subgroups with very poor glycemic control (ie, ≥108 mmol/mol (≥12.0%); cluster 4, 4.4%, and cluster 5, 7.5%) and obesity (cluster 6, 15.4%) had a lower proportion of NHW youth, lower socioeconomic position, and reported decreased pump use and poorer health behaviors (overall p<0.01). The overweight subgroup with very poor glycemic control (cluster 5) showed the highest lipids and blood pressure (p<0.01). Conclusions: There are distinct subgroups of youth and young adults with T1D that share weight-glycemia phenotypes. Subgroups may benefit from tailored interventions addressing differences in clinical care, health behaviors, and underlying health inequity. © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ

    Identification of clinically relevant dysglycemia phenotypes based on continuous glucose monitoring data from youth with type 1 diabetes and elevated hemoglobin A1c

    Get PDF
    Background/Objective: To identify and characterize subgroups of adolescents with type 1 diabetes (T1D) and elevated hemoglobin A1c (HbA1c) who share patterns in their continuous glucose monitoring (CGM) data as “dysglycemia phenotypes.”. Methods: Data were analyzed from the Flexible Lifestyles Empowering Change randomized trial. Adolescents with T1D (13-16 years, duration >1 year) and HbA1c 8% to 13% (64-119 mmol/mol) wore blinded CGM at baseline for 7 days. Participants were clustered based on eight CGM metrics measuring hypoglycemia, hyperglycemia, and glycemic variability. Clusters were characterized by their baseline features and 18 months changes in HbA1c using adjusted mixed effects models. For comparison, participants were stratified by baseline HbA1c (≤/>9.0% [75 mmol/mol]). Results: The study sample included 234 adolescents (49.8% female, baseline age 14.8 ± 1.1 years, baseline T1D duration 6.4 ± 3.7 years, baseline HbA1c 9.6% ± 1.2%, [81 ± 13 mmol/mol]). Three Dysglycemia Clusters were identified with significant differences across all CGM metrics (P <.001). Dysglycemia Cluster 3 (n = 40, 17.1%) showed severe hypoglycemia and glycemic variability with moderate hyperglycemia and had a lower baseline HbA1c than Clusters 1 and 2 (P <.001). This cluster showed increases in HbA1c over 18 months (p-for-interaction = 0.006). No other baseline characteristics were associated with Dysglycemia Clusters. High HbA1c was associated with lower pump use, greater insulin doses, more frequent blood glucose monitoring, lower motivation, and lower adherence to diabetes self-management (all P <.05). Conclusions: There are subgroups of adolescents with T1D for which glycemic control is challenged by different aspects of dysglycemia. Enhanced understanding of demographic, behavioral, and clinical characteristics that contribute to CGM-derived dysglycemia phenotypes may reveal strategies to improve treatment
    corecore