29,344 research outputs found
About quantum fluctuations and holographic principle in (4+n)-dimensional spacetime
In the article we present explicit expressions for quantum fluctuations of
spacetime in the case of -dimensional spacetimes, and consider their
holographic properties and some implications for clocks, black holes and
computation. We also consider quantum fluctuations and their holographic
properties in ADD model and estimate the typical size and mass of the clock to
be used in precise measurements of spacetime fluctuations. Numerical
estimations of phase incoherence of light from extra-galactic sources in ADD
model are also presented.Comment: 5 page
Physics of computation and light sheet concept in the measurement of (4+n)-dimensional spacetime geometry
We analyze the limits that quantum mechanics imposes on the accuracy to which
-dimensional spacetime geometry can be measured. Using physics of
computation and light sheet concept we derive explicit expressions for quantum
fluctuations and explore their cumulative effects for various spacetime foam
models.Comment: 5 page
Critique of proposed limit to space--time measurement, based on Wigner's clocks and mirrors
Based on a relation between inertial time intervals and the Riemannian
curvature, we show that space--time uncertainty derived by Ng and van Dam
implies absurd uncertainties of the Riemannian curvature.Comment: 5 pages, LaTex, field "Author:" correcte
Data catalog series for space science and applications flight missions. Volume 4A: Descriptions of meteorological and terrestrial applications spacecraft and investigations
The National Space Science Data Center (NSSDC) provides data from and information about space science and applications flight investigations in support of additional studies beyond those performed as the principal part of any flight mission. The Earth-orbiting spacecraft for investigations of the earth and its atmosphere is discussed. Geodetic tracking data are included in this category. The principal subject areas presented are meteorology and earth resources survey, and the spacecraft selection is made according to those subjects. All experiments on board the spacecraft are described. No attempt is made to reference investigations that are related to the above disciplines, but that are described in other volumes of this series
Selected topics in Planck-scale physics
We review a few topics in Planck-scale physics, with emphasis on possible
manifestations in relatively low energy. The selected topics include quantum
fluctuations of spacetime, their cumulative effects, uncertainties in
energy-momentum measurements, and low energy quantum-gravity phenomenology. The
focus is on quantum-gravity-induced uncertainties in some observable
quantities. We consider four possible ways to probe Planck-scale physics
experimentally: 1. looking for energy-dependent spreads in the arrival time of
photons of the same energy from GRBs; 2. examining spacetime
fluctuation-induced phase incoherence of light from extragalactic sources; 3.
detecting spacetime foam with laser-based interferometry techniques; 4.
understanding the threshold anomalies in high energy cosmic ray and gamma ray
events. Some other experiments are briefly discussed. We show how some physics
behind black holes, simple clocks, simple computers, and the holographic
principle is related to Planck-scale physics. We also discuss a formulation of
the Dirac equation as a difference equation on a discrete Planck-scale
spacetime lattice, and a possible interplay between Planck-scale and
Hubble-scale physics encoded in the cosmological constant (dark energy).Comment: 31 pages, 1 figure; minor changes; to appear in Mod. Phys. Lett. A as
a Brief Revie
Burst-by-Burst Adaptive Decision Feedback Equalised TCM, TTCM and BICM for H.263-Assisted Wireless Video Telephony
Decision Feedback Equaliser (DFE) aided wideband Burst-by-Burst (BbB) Adaptive Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM) and Bit-Interleaved Coded Modulation (BICM) assisted H.263-based video transceivers are proposed and characterised in performance terms when communicating over the COST 207 Typical Urban wideband fading channel. Specifically, four different modulation modes, namely 4QAM, 8PSK, 16QAM and 64QAM are invoked and protected by the above-mentioned coded modulation schemes. The TTCM assisted scheme was found to provide the best video performance, although at the cost of the highest complexity. A range of lower-complexity arrangements will also be characterised. Finally, in order to confirm these findings in an important practical environment, we have also investigated the adaptive TTCM scheme in the CDMA-based Universal Mobile Telecommunications System's (UMTS) Terrestrial Radio Access (UTRA) scenario and the good performance of adaptive TTCM scheme recorded when communicating over the COST 207 channels was retained in the UTRA environment
The fluctuation spectra around a Gaussian classical solution of a tensor model and the general relativity
Tensor models can be interpreted as theory of dynamical fuzzy spaces. In this
paper, I study numerically the fluctuation spectra around a Gaussian classical
solution of a tensor model, which represents a fuzzy flat space in arbitrary
dimensions. It is found that the momentum distribution of the low-lying
low-momentum spectra is in agreement with that of the metric tensor modulo the
general coordinate transformation in the general relativity at least in the
dimensions studied numerically, i.e. one to four dimensions. This result
suggests that the effective field theory around the solution is described in a
similar manner as the general relativity.Comment: 29 pages, 13 figure
From computation to black holes and space-time foam
We show that quantum mechanics and general relativity limit the speed
of a simple computer (such as a black hole) and its memory space
to \tilde{\nu}^2 I^{-1} \lsim t_P^{-2}, where is the Planck time.
We also show that the life-time of a simple clock and its precision are
similarly limited. These bounds and the holographic bound originate from the
same physics that governs the quantum fluctuations of space-time. We further
show that these physical bounds are realized for black holes, yielding the
correct Hawking black hole lifetime, and that space-time undergoes much larger
quantum fluctuations than conventional wisdom claims -- almost within range of
detection with modern gravitational-wave interferometers.Comment: A misidentification of computer speeds is corrected. Our results for
black hole computation now agree with those given by S. Lloyd. All other
conclusions remain unchange
Chiral symmetry breaking in a uniform external magnetic field II. Symmetry restoration at high temperatures and chemical potentials
Chiral symmetry is dynamically broken in quenched, ladder QED at weak gauge
couplings when an external magnetic field is present. In this paper, we show
that chiral symmetry is restored above a critical chemical potential and the
corresponding phase transition is of first order. In contrast, the chiral
symmetry restoration at high temperatures (and at zero chemical potential) is a
second order phase transition.Comment: Latex; 12 pages; 8 postscript figures include
Recommended from our members
Graphene-polyelectrolyte multilayer membranes with tunable structure and internal charge
One great advantage of graphene-polyelectrolyte multilayer (GPM) membranes is their tunable structure and internal charge for improved separation performance. In this study, we synthesized GO-dominant GPM membrane with internal negatively-charged domains, polyethyleneimine (PEI)-dominant GPM membrane with internal positively-charged domains and charge-balanced dense/loose GPM membranes by simply adjusting the ionic strength and pH of the GO and PEI solutions used in layer-by-layer membrane synthesis. A combined system of quartz crystal microbalance with dissipation (QCM-D) and ellipsometry was used to analyze the mass deposition, film thickness, and layer density of the GPM membranes. The performance of the GPM membranes were compared in terms of both permeability and selectivity to determine the optimal membrane structure and synthesis strategy. One effective strategy to improve the GPM membrane permeability-selectivity tradeoff is to assemble charge-balanced dense membranes under weak electrostatic interactions. This balanced membrane exhibits the highest MgCl2 selectivity (∼86%). Another effective strategy for improved cation removal is to create PEI-dominant membranes that provide internal positively-charged barrier to enhance cation selectivity without sacrificing water permeability. These findings shine lights on the development of a systematic approach to push the boundary of permeability-selectivity tradeoff for GPM membranes
- …