29,344 research outputs found

    About quantum fluctuations and holographic principle in (4+n)-dimensional spacetime

    Full text link
    In the article we present explicit expressions for quantum fluctuations of spacetime in the case of (4+n)(4+n)-dimensional spacetimes, and consider their holographic properties and some implications for clocks, black holes and computation. We also consider quantum fluctuations and their holographic properties in ADD model and estimate the typical size and mass of the clock to be used in precise measurements of spacetime fluctuations. Numerical estimations of phase incoherence of light from extra-galactic sources in ADD model are also presented.Comment: 5 page

    Physics of computation and light sheet concept in the measurement of (4+n)-dimensional spacetime geometry

    Full text link
    We analyze the limits that quantum mechanics imposes on the accuracy to which (4+n)(4+n)-dimensional spacetime geometry can be measured. Using physics of computation and light sheet concept we derive explicit expressions for quantum fluctuations and explore their cumulative effects for various spacetime foam models.Comment: 5 page

    Critique of proposed limit to space--time measurement, based on Wigner's clocks and mirrors

    Get PDF
    Based on a relation between inertial time intervals and the Riemannian curvature, we show that space--time uncertainty derived by Ng and van Dam implies absurd uncertainties of the Riemannian curvature.Comment: 5 pages, LaTex, field "Author:" correcte

    Data catalog series for space science and applications flight missions. Volume 4A: Descriptions of meteorological and terrestrial applications spacecraft and investigations

    Get PDF
    The National Space Science Data Center (NSSDC) provides data from and information about space science and applications flight investigations in support of additional studies beyond those performed as the principal part of any flight mission. The Earth-orbiting spacecraft for investigations of the earth and its atmosphere is discussed. Geodetic tracking data are included in this category. The principal subject areas presented are meteorology and earth resources survey, and the spacecraft selection is made according to those subjects. All experiments on board the spacecraft are described. No attempt is made to reference investigations that are related to the above disciplines, but that are described in other volumes of this series

    Selected topics in Planck-scale physics

    Get PDF
    We review a few topics in Planck-scale physics, with emphasis on possible manifestations in relatively low energy. The selected topics include quantum fluctuations of spacetime, their cumulative effects, uncertainties in energy-momentum measurements, and low energy quantum-gravity phenomenology. The focus is on quantum-gravity-induced uncertainties in some observable quantities. We consider four possible ways to probe Planck-scale physics experimentally: 1. looking for energy-dependent spreads in the arrival time of photons of the same energy from GRBs; 2. examining spacetime fluctuation-induced phase incoherence of light from extragalactic sources; 3. detecting spacetime foam with laser-based interferometry techniques; 4. understanding the threshold anomalies in high energy cosmic ray and gamma ray events. Some other experiments are briefly discussed. We show how some physics behind black holes, simple clocks, simple computers, and the holographic principle is related to Planck-scale physics. We also discuss a formulation of the Dirac equation as a difference equation on a discrete Planck-scale spacetime lattice, and a possible interplay between Planck-scale and Hubble-scale physics encoded in the cosmological constant (dark energy).Comment: 31 pages, 1 figure; minor changes; to appear in Mod. Phys. Lett. A as a Brief Revie

    Burst-by-Burst Adaptive Decision Feedback Equalised TCM, TTCM and BICM for H.263-Assisted Wireless Video Telephony

    No full text
    Decision Feedback Equaliser (DFE) aided wideband Burst-by-Burst (BbB) Adaptive Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM) and Bit-Interleaved Coded Modulation (BICM) assisted H.263-based video transceivers are proposed and characterised in performance terms when communicating over the COST 207 Typical Urban wideband fading channel. Specifically, four different modulation modes, namely 4QAM, 8PSK, 16QAM and 64QAM are invoked and protected by the above-mentioned coded modulation schemes. The TTCM assisted scheme was found to provide the best video performance, although at the cost of the highest complexity. A range of lower-complexity arrangements will also be characterised. Finally, in order to confirm these findings in an important practical environment, we have also investigated the adaptive TTCM scheme in the CDMA-based Universal Mobile Telecommunications System's (UMTS) Terrestrial Radio Access (UTRA) scenario and the good performance of adaptive TTCM scheme recorded when communicating over the COST 207 channels was retained in the UTRA environment

    The fluctuation spectra around a Gaussian classical solution of a tensor model and the general relativity

    Full text link
    Tensor models can be interpreted as theory of dynamical fuzzy spaces. In this paper, I study numerically the fluctuation spectra around a Gaussian classical solution of a tensor model, which represents a fuzzy flat space in arbitrary dimensions. It is found that the momentum distribution of the low-lying low-momentum spectra is in agreement with that of the metric tensor modulo the general coordinate transformation in the general relativity at least in the dimensions studied numerically, i.e. one to four dimensions. This result suggests that the effective field theory around the solution is described in a similar manner as the general relativity.Comment: 29 pages, 13 figure

    From computation to black holes and space-time foam

    Get PDF
    We show that quantum mechanics and general relativity limit the speed ν~\tilde{\nu} of a simple computer (such as a black hole) and its memory space II to \tilde{\nu}^2 I^{-1} \lsim t_P^{-2}, where tPt_P is the Planck time. We also show that the life-time of a simple clock and its precision are similarly limited. These bounds and the holographic bound originate from the same physics that governs the quantum fluctuations of space-time. We further show that these physical bounds are realized for black holes, yielding the correct Hawking black hole lifetime, and that space-time undergoes much larger quantum fluctuations than conventional wisdom claims -- almost within range of detection with modern gravitational-wave interferometers.Comment: A misidentification of computer speeds is corrected. Our results for black hole computation now agree with those given by S. Lloyd. All other conclusions remain unchange

    Chiral symmetry breaking in a uniform external magnetic field II. Symmetry restoration at high temperatures and chemical potentials

    Full text link
    Chiral symmetry is dynamically broken in quenched, ladder QED at weak gauge couplings when an external magnetic field is present. In this paper, we show that chiral symmetry is restored above a critical chemical potential and the corresponding phase transition is of first order. In contrast, the chiral symmetry restoration at high temperatures (and at zero chemical potential) is a second order phase transition.Comment: Latex; 12 pages; 8 postscript figures include
    corecore