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From computation to black holes and space-time foam
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Abstract

We show that quantum mechanics and general relativity limit the speed ν̃ of a

simple computer (such as a black hole) and its memory space I to ν̃2I−1 <
∼ t

−2

P ,

where tP is the Planck time. We also show that the life-time of a simple clock

and its precision are similarly limited. These bounds and the holographic

bound originate from the same physics that governs the quantum fluctuations

of space-time. We further show that these physical bounds are realized for

black holes, yielding the correct Hawking black hole lifetime, and that space-

time undergoes much larger quantum fluctuations than conventional wisdom

claims — almost within range of detection with modern gravitational-wave

interferometers.
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The past few decades have witnessed amazing growth in the ability and speed with which

computers can process information. Quantum computation only adds to the prospect that

this exponential growth in information processing power will continue. But it is natural to

ask whether this growth can go on indefinitely or whether there are physical laws that impose

limitations to it. [1,2] In this Letter we show that indeed the laws of quantum mechanics

and gravitation put considerable bounds on computation. In particular, the number ν̃ of

operations per unit time, and the number I of bits of information in the memory space of a

simple computer (“simple” in the sense to be made precise below), are both limited by the

input power such that their product is bounded by a universal constant given by ν̃2I−1 <
∼ t−2

P ,

where tP = (h̄G/c5)1/2 is the Planck time formed by the speed of light c, the quantum scale

h̄, and the gravitational constant G. Along the way, we also show that the total running

time T over which a simple clock can remain accurate, and the smallest time interval t that

the clock is capable of resolving, are bounded by T <
∼ t(t/tP )

2 . Interestingly, these bounds

are saturated for black holes. So black holes, in some sense, may be regarded as the ultimate

simple computers and ultimate simple clocks (though it may be extremely difficult or even

impossible to realize this technological feat). As a demonstration of the unity of physics,

we show that the physics that sets the limits to computation is precisely the physics that

governs the quantum fluctuations of space-time [3,4] which, as pointed out recently, [5–7]

can plausibly be detected with gravitational-wave interferometers such as LIGO/VIRGO and

LISA through future refinements. Furthermore, the same physics underlies the holographic

principle. Thus the physics behind simple clocks, simple computers, black holes, space-time

foam, and the holographic principle is inter-related. It is this inter-relationship that we

would like to emphasize in this Letter.

The ingredients we use to derive the physical limits to computation are the general

principles of quantum mechanics and general relativity which should suffice for the physics

in the low-energy regime of quantum gravity in which we are interested. (Thus, in what

follows, it is understood that all the time intervals we are dealing with are much greater than

the Planck time, and all the distances much larger than the Planck length (ctP ).) Following
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Wigner [8], one can use quantum mechanics to set fundamental limits on the mass m of

any system that serves as a time-registering device. Briefly, the argument goes as follows:

If the clock has a linear spread of δR, then its momentum uncertainty is h̄(δR)−1. After

a time τ , its position spread grows to δR(τ) = δR + h̄τm−1(δR)−1 with the minimum at

δR = (h̄τ/m)1/2. At the end of the total running time T , the linear spread can grow to

δR >
∼

(

h̄T

m

)1/2

. (1)

But for the clock to give time to within accuracy t, it must have a small enough spread

in position, so small that the time at which a light quantum strikes it (in order to read

the time) can be determined within the required accuracy t, thus δR <
∼ ct. In other words,

we require the wave packet of the center-of-mass of the clock be confined, throughout the

running time T , to a region of the size ct. It follows that, for a given T and t, the lower

bound on m reads

m >
∼

h̄

c2t

(

T

t

)

. (2)

This limit is more restrictive than that given by Heisenberg’s energy-time uncertainty rela-

tion because it requires repeated measurement of time not to introduce significant inaccu-

racies over the total running time T ; this requirement imposes a more severe limit on the

clock mass than a simple simultaneous measurement of both the time t and the energy mc2.

Next, as shown by the present author and van Dam [3], one can supplement the quantum

mechanical relation Eq. (2) with a fundamental limit from general relativity. In essence one

finds that the minimum time interval that a clock can be used to measure is the light travel

time across its Schwarzschild radius. The argument is quite simple. Let the clock be a simple

light-clock consisting of two parallel mirrors (each of mass m/2) between which bounces a

beam of light. On the one hand, for the clock to be able to resolve time interval as small

as t, the mirrors must be separated by a distance d with d/c <∼ t. On the other hand, d

is necessarily larger than the Schwarzschild radius Gm/c2of the mirrors so that the time

registered by the clock can be read off at all. From these two requirements, it follows that

the upper bound on m is given by [3]
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t >∼
Gm

c3
. (3)

As clocks, black holes saturate this bound (more on this later).

One can now use Eq.(2) to obtain a bound on the speed of computation of any information

processor. [9] The mean input power given by P = mc2/T and the fastest possible processing

frequency given by ν = t−1 are bounded (via Eq.(2)) as

ν2 =
1

t2
<
∼

mc2

h̄T
=

P

h̄
. (4)

Thus power limits speed of computation.

Next, by substituting Eq. (2) into Eq. (3) we can relate T to t as

T <
∼ t

(

t

tP

)2

. (5)

Thus the better precision a clock attains, i.e., the smaller t is, the shorter it can keep accurate

time, i.e., the smaller T is. With the Planck time being only about 10−43sec, this bound

on T is of no practical consequence (yet). For example, a femtosecond (10−15 sec) precision

yields the bound T <
∼ 1034 years.

Now it is time for us to make precise what we mean by the qualification “simple” char-

acterizing the simple clock and the simple computer. Alert readers may have already ques-

tioned the validity of Eq. (3), and accordingly also of the above T-t relation (Eq. (5)). For

example, consider a large clock consisting of N identical small clocks to keep time one after

another. For large enough N, the T-t relation and Eq. (3) are violated for the large clock.

But note that this argument is not valid if we consider only those clocks for which no such

separation of components is involved. They are what we call simple clocks. The same qual-

ification will be understood to apply to simple computers. The origin of this qualification

can be traced to the bound given by Eq. (3). Why should we be interested in simple clocks

and simple computers? For the simple reason that Nature makes use of them. (This point

will be made clear below when we derive the holographic principle and when we discuss the

case of black holes.)
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Let us use the T-t relation in Eq. (5) to put a limit on the memory space of a computer.

The point is that T/t, the maximum number of steps of information processing, is, aside

from factors like ln2, the amount of information I that can be registered by the computer.

With the aid of Eq. (4), the T-t relation yields

I ∼
T

t
<
∼

1

(νtP )2
∼

h̄

P t2P
. (6)

While it is not too surprising that the input power P limits the speed of computation ν (as

given by Eq. (4)), it is less expected that power also limits memory space of a computer

in the way given by Eq. (6). We note that Eq. (2) and Eq. (3) can also be used to give

Iν <
∼ mc2/h̄ and ν <

∼ h̄/(t2Pmc2) respectively.

More interestingly, Eq.(6) shows that the product of I and ν2 is bounded by a universal

constant. Now ν = t−1 should be identified as the clock rate of a computer, i.e., the number

of operations per bit per unit time. It is related to the number ν̃ of operations per unit time

by ν̃ = Iν. Then it follows from Eq. (6) that

ν̃2

I
= Iν2 <

∼

1

t2P
≡

c5

h̄G
∼ 1086/sec2, (7)

independent of the mass, size, and details of the simple computer. For the numerical value

in Eq. (7), we have used the speed of light in vacuum for c in tP . This expression (valid

for simple computers) links together our concepts of information, gravity, and quantum

uncertainty. We will see below that nature seems to respect this bound which, in particular,

is realized for black holes. The restriction to simple computers is the price we have to pay

for the universality of this bound. For comparison, current laptops perform about 1010

operations per sec on 1010 bits, yielding ν̃2I−1
∼ 1010/sec2.

As intriguing as the physical limits to computation are, it is perhaps even more amazing

that the physics behind them is also what governs the quantum fluctuations of space-time.

To see this, let us consider measuring the distance R ≫ ctP between two points. We can

put a clock at one of the points and a mirror at the other point. By sending a light signal

from the clock to the mirror in a timing experiment we can determine the distance. But the
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quantum uncertainty in the positions of the clock and the mirror introduces an inaccuracy

δR in the distance measurement. The same argument used above to derive the T-t relation

now yields a similar bound for δR:

δR

(

δR

ctP

)2

>
∼ R, (8)

in a distance measurement. [3,10] In a time measurement, an analogous bound is given by

Eq. (5) with T playing the role of the measured time and t the uncertainty. [3] This limita-

tion to space-time measurements can be interpreted as resulting from quantum fluctuations

of space-time itself. In other words, at short distance scales, space-time is foamy. Thus the

same physics underlies both the foaminess of space-time and the limits to computation and

clock precision. Not surprisingly, these bounds have the same form. It is remarkable that

modern gravitational-wave interferometers, through future refinements, may reach displace-

ment noise levels low enough to test this space-time foam model, [3,4] because the intrinsic

foaminess of space-time provides another source of noise in the interferometers that can

be highly constrained experimentally. [5,7] According to one estimate [5,7], if Eq. (8) is

correct, the “advanced phase” of LIGO is expected to achieve a noise level low enough to

probe tP down to 10−41sec, only about two orders of magnitude from what we expect it

(tP ∼ 10−43sec) to be!

Furthermore, the same physics is behind the holographic principle, which states that the

number of degrees of freedom of a region of space is bounded (not by the volume but) by

the area of the region in Planck units. [11] To see this, consider a region of space with linear

dimension R. Conventional wisdom claims that the region can be partitioned into cubes as

small as (ctP )
3. It follows that the number of degrees of freedom of the region is bounded

by (R/ctP )
3, i.e., the volume of the region in Planck units. But according to Eq. (8), the

smallest cubes into which we can partition the region cannot have a linear dimension smaller

than (Rc2t2P )
1/3. Therefore, the number of degrees of freedom of the region is bounded by

[R/(Rc2t2P )
1/3]3, i.e., the area of the region in Planck units, as stipulated by the holographic

principle. [7] (A judicious application of Eq. (6) can also yield this result.) Thus the
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holographic principle has its origin in the quantum fluctuations of space-time. Turning the

argument around, we believe the holographic principle alone suggests that the quantum

fluctuations of space-time are as given by Eq. (8) (δR >
∼ (Rc2t2P )

1/3) and hence are much

larger than what conventional wisdom [12] leads us to believe (δR >
∼ ctP ). [13]

Let us now ask for what kind of physical systems are the physical limits listed above

saturated (order-of-magnitude-wise). We will show that there is at least one (and very

likely only one) such system: the system of black holes. Since black holes have an entropy

given by the event horizon area in Planck units, [14] the holographic bound is obviously

realized. (Alternatively, we can show this by using Eq. (9) and Eq. (10) below.) Next,

consider a black hole as a clock, then it is reasonable to expect that the maximum running

time of this gravitational clock is given by the Hawking black hole life-time

T ∼ TH ≡
G2m3

h̄c4
, (9)

and that the minimum interval that the black hole can be used to measure is given by the

light travel time across the black hole’s horizon

t ∼
Gm

c3
. (10)

It is interesting that both Eq. (9) and Eq. (10) can actually be derived by appealing to

Wigner’s two inequalities Eq. (1) and Eq. (2) and using the Schwarzschild radius of the

black hole as the minimum clock size. [9] Better yet, if we use Eq. (2) and Eq. (3), we can

immediately find that the bound on T is given by the Hawking black hole life-time. Thus,

if we had not known of black hole evaporation, this remarkable result would have implied

that there is a maximum lifetime for a black hole! Now note that according to Eq. (10),

the limit on t as shown in Eq. (3) is saturated for a black hole. Furthermore, using Eq. (9)

and Eq. (10) one can easily show that the bound given by Eq. (2) is saturated. It then

follows that all the subsequent bounds (from Eq. (4) to Eq. (7)) are saturated for black

holes. As a check, we can combine Eq. (9) and Eq. (10) to yield T/t3 ∼ t−2

P which saturates

the T-t bound given in Eq. (5). On the other hand, when a black hole is considered as
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an information processor with power P = mc2/TH ∼ h̄c6/G2m2 , we can use Eq. (10) to

obtain ν2
∼ P/h̄ which realizes the bound given by Eq. (4). Eq. (9) and Eq. (10) can also

be used to yield I ∼ T/t ∼ h̄/P t2P which saturates the bound given by Eq. (6). Finally,

with both ν− and I−bounds saturated, the universal bound on computation given by Eq.

(7) is also saturated for black holes. All these results reinforce the conceptual importance

of black holes as the simplest and most fundamental [15] constructs of space-time, which

set the universal limits to computation, clock precision, and numbers of degrees of freedom.

These properties of black holes lead us to believe that their very existence lends support to

the physical bounds presented in this paper and the relatively large quantum fluctuations of

space-time given by Eq. (8). By the same token, detection of the space-time foam (Eq. (8))

will be an indirect verification of Hawking black hole evaporation. From our perspective,

black hole physics is intimately related to space-time foam physics.

Finally we note that, for a 1-kg black hole computer, Eq. (9) and Eq. (10) yield both

I = T/t ∼ 1016 bits and ν̃ = Iν = T t−2
∼ 1051/sec. These results agree with those given

by Lloyd on the physical limits to computation in Ref. [1].

To summarize, we have shown that the laws of quantum mechanics and gravitation, which

govern the quantum fluctuations of space-time, also set physical bounds on computation and

on the precision of clocks. Power limits a simple computer’s speed of computation ν̃ and its

memory space I. Their product obeys the universal bound given by ν̃2I−1 <
∼ t−2

P ∼ 1086/sec2.

This bound is realized for black holes. The same physics underlies the holographic principle.

We have also argued that quantum fluctuations of space-time are actually much larger

than what the folkfore suggests. We urge the experimentalists, especially those in the

gravitational-wave interferometer field, [5,7,10] to strive to detect them.
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especially for pointing out my misidentification of computer speeds in the earlier versions of
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