4,317 research outputs found

    ANTS2 package: simulation and experimental data processing for Anger camera type detectors

    Get PDF
    ANTS2 is a simulation and data processing package developed for position sensitive detectors with Anger camera type readout. The simulation module of ANTS2 is based on ROOT package from CERN, which is used to store the detector geometry and to perform 3D navigation. The module is capable of simulating particle sources, performing particle tracking, generating photons of primary and secondary scintillation, tracing optical photons and generating photosensor signals. The reconstruction module features several position reconstruction methods based on the statistical reconstruction algorithms (including GPU-based implementations), artificial neural networks and k-NN searches. The module can process simulated as well as imported experimental data containing photosensor signals. A custom library for B-spline parameterization of spatial response of photosensors is implemented which can be used to calculate and parameterize the spatial response of a detector. The package includes a graphical user interface with an extensive set of configuration, visualization and analysis tools. ANTS2 is being developed with the focus on the iterative (adaptive) reconstruction of the detector response using flood field irradiation data. The package is implemented in C++ programming language and it is a multiplatform, open source project.Peer Reviewe

    Scintillation efficiency of liquid xenon for nuclear recoils with the energy down to 5 keV

    Full text link
    The scintillation efficiency of liquid xenon for nuclear recoils has been measured to be nearly constant in the recoil energy range from 140 keV down to 5 keV. The average ratio of the efficiency for recoils to that for gamma-rays is found to be 0.19+-0.02.Comment: 13 pages, 5 figure

    A model of the reflection distribution in the vacuum ultra violet region

    Full text link
    A reflection model with three components, a specular spike, a specular lobe and a diffuse lobe is discussed. This model was successfully applied to describe reflection of xenon scintillation light (175 nm) by PTFE and other fluoropolymers and can be used for Monte Carlo simulation and analysis of scintillation detectors. The measured data favors a Trowbridge-Reitz distribution function of ellipsoidal micro-surfaces. The intensity of the coherent reflection increases with increasing angle of incidence, as expected, since the surface appears smoother at grazing angles. The total reflectance obtained for PTFE is about 70% for VUV light at normal incidence in vacuum and estimated to be up to 100% in contact with liquid xenon

    Functionalizing self-assembled GaN quantum dot superlattices by Eu-implantation

    Get PDF
    Self-assembled GaN quantum dots (QDs) stacked in superlattices (SL) with AlN spacer layers were implanted with Europium ions to fluences of 1013, 1014, and 1015 cm−2. The damage level introduced in the QDs by the implantation stays well below that of thick GaN epilayers. For the lowest fluence, the structural properties remain unchanged after implantation and annealing while for higher fluences the implantation damage causes an expansion of the SL in the [0001] direction which increases with implantation fluence and is only partly reversed after thermal annealing at 1000 °C. Nevertheless, in all cases, the SL quality remains very good after implantation and annealing with Eu ions incorporated preferentially into near-substitutional cation sites. Eu3+ optical activation is achieved after annealing in all samples. In the sample implanted with the lowest fluence, the Eu3+ emission arises mainly from Eu incorporated inside the QDs while for the higher fluences only the emission from Eu inside the AlN-buffer, capping, and spacer layers is observed. © 2010 American Institute of PhysicsFCT-PTDC/CTM/100756/2008program PESSOA EGIDE/GRICESFCT-SFRH/BD/45774/2008FCT-SFRH/BD/44635/200

    Reflectance of Polytetrafluoroethylene (PTFE) for Xenon Scintillation Light

    Full text link
    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet wavelength region (175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Fluoropolymers, namely ETFE, FEP and PFA were also measured
    • …
    corecore