A reflection model with three components, a specular spike, a specular lobe
and a diffuse lobe is discussed. This model was successfully applied to
describe reflection of xenon scintillation light (175 nm) by PTFE and other
fluoropolymers and can be used for Monte Carlo simulation and analysis of
scintillation detectors. The measured data favors a Trowbridge-Reitz
distribution function of ellipsoidal micro-surfaces. The intensity of the
coherent reflection increases with increasing angle of incidence, as expected,
since the surface appears smoother at grazing angles. The total reflectance
obtained for PTFE is about 70% for VUV light at normal incidence in vacuum and
estimated to be up to 100% in contact with liquid xenon