80 research outputs found

    Benefits and harms of oral anticoagulant therapy in chronic kidney disease: a systematic review and meta-analysis

    Get PDF
    Background: Effects of oral anticoagulation in chronic kidney disease (CKD) are uncertain. Purpose: To evaluate the benefits and harms of vitamin K antagonists (VKAs) and non–vitamin K oral anticoagulants (NOACs) in adults with CKD stages 3 to 5, including those with dialysis-dependent end-stage kidney disease (ESKD). Data Sources: English-language searches of MEDLINE, EMBASE, and Cochrane databases (inception to February 2019); review bibliographies; and ClinicalTrials.gov (25 February 2019). Study Selection: Randomized controlled trials evaluating VKAs or NOACs for any indication in patients with CKD that reported efficacy or bleeding outcomes. Data Extraction: Two authors independently extracted data, assessed risk of bias, and rated certainty of evidence. Data Synthesis: Forty-five trials involving 34 082 participants who received anticoagulation for atrial fibrillation (AF) (11 trials), venous thromboembolism (VTE) (11 trials), thromboprophylaxis (6 trials), prevention of dialysis access thrombosis (8 trials), and cardiovascular disease other than AF (9 trials) were included. All but the 8 trials involving patients with ESKD excluded participants with creatinine clearance less than 20 mL/min or estimated glomerular filtration rate less than 15 mL/min/1.73 m2. In AF, compared with VKAs, NOACs reduced risks for stroke or systemic embolism (risk ratio [RR], 0.79 [95% CI, 0.66 to 0.93]; high-certainty evidence) and hemorrhagic stroke (RR, 0.48 [CI, 0.30 to 0.76]; moderate-certainty evidence). Compared with VKAs, the effects of NOACs on recurrent VTE or VTE-related death were uncertain (RR, 0.72 [CI, 0.44 to 1.17]; low-certainty evidence). In all trials combined, NOACs seemingly reduced major bleeding risk compared with VKAs (RR, 0.75 [CI, 0.56 to 1.01]; low-certainty evidence). Limitation: Scant evidence for advanced CKD or ESKD; data mostly from subgroups of large trials. Conclusion: In early-stage CKD, NOACs had a benefit–risk profile superior to that of VKAs. For advanced CKD or ESKD, there was insufficient evidence to establish benefits or harms of VKAs or NOACs. Primary Funding Source: None. (PROSPERO: CRD42017079709

    SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis

    Get PDF
    Background The effects of sodium-glucose co-transporter-2 (SGLT2) inhibitors on kidney failure, particularly the need for dialysis or transplantation or death due to kidney disease, is uncertain. Additionally, previous studies have been underpowered to robustly assess heterogeneity of effects on kidney outcomes by different levels of estimated glomerular filtration rate (eGFR) and albuminuria. We aimed to do a systematic review and meta-analysis to assess the effects of SGLT2 inhibitors on major kidney outcomes in patients with type 2 diabetes and to determine the consistency of effect size across trials and different levels of eGFR and albuminuria. Methods We did a systematic review and meta-analysis of randomised, controlled, cardiovascular or kidney outcome trials of SGLT2 inhibitors that reported effects on major kidney outcomes in people with type 2 diabetes. We searched MEDLINE and Embase from database inception to June 14, 2019, to identify eligible trials. The primary outcome was a composite of dialysis, transplantation, or death due to kidney disease. We used random-effects models to obtain summary relative risks (RRs) with 95% CIs and random-effects meta-regression to explore effect modification by subgroups of baseline eGFR, albuminuria, and use of renin–angiotensin system (RAS) blockade. This review is registered with PROSPERO (CRD42019131774). Findings From 2085 records identified, four studies met our inclusion criteria, assessing three SGLT2 inhibitors: empagliflozin (EMPA-REG OUTCOME), canagliflozin (CANVAS Program and CREDENCE), and dapagliflozin (DECLARE–TIMI 58). From a total of 38 723 participants, 252 required dialysis or transplantation or died of kidney disease, 335 developed end-stage kidney disease, and 943 had acute kidney injury. SGLT2 inhibitors substantially reduced the risk of dialysis, transplantation, or death due to kidney disease (RR 0·67, 95% CI 0·52–0·86, p=0·0019), an effect consistent across studies (I2=0%, pheterogeneity=0·53). SGLT2 inhibitors also reduced end-stage kidney disease (0·65, 0·53–0·81, p<0·0001), and acute kidney injury (0·75, 0·66–0·85, p<0·0001), with consistent benefits across studies. Although we identified some evidence that the proportional effect of SGLT2 inhibitors might attenuate with declining kidney function (ptrend=0·073), there was clear, separate evidence of benefit for all eGFR subgroups, including for participants with a baseline eGFR 30–45 mL/min per 1·73 m2 (RR 0·70, 95% CI 0·54–0·91, p=0·0080). Renoprotection was also consistent across studies irrespective of baseline albuminuria (ptrend=0·66) and use of RAS blockade (pheterogeneity=0·31). Interpretation SGLT2 inhibitors reduced the risk of dialysis, transplantation, or death due to kidney disease in individuals with type 2 diabetes and provided protection against acute kidney injury. These data provide substantive evidence supporting the use of SGLT2 inhibitors to prevent major kidney outcomes in people with type 2 diabetes. Funding None

    Evaluation of Variation in the Performance of GFR Slope as a Surrogate End Point for Kidney Failure in Clinical Trials that Differ by Severity of CKD

    Get PDF
    BACKGROUND: The GFR slope has been evaluated as a surrogate end point for kidney failure in meta-analyses on a broad collection of randomized controlled trials (RCTs) in CKD. These analyses evaluate how accurately a treatment effect on GFR slope predicts a treatment effect on kidney failure. We sought to determine whether severity of CKD in the patient population modifies the performance of GFR slope. METHODS: We performed Bayesian meta-regression analyses on 66 CKD RCTs to evaluate associations between effects on GFR slope (the chronic slope and the total slope over 3 years, expressed as mean differences in ml/min per 1.73 m2/yr) and those of the clinical end point (doubling of serum creatinine, GFR &lt;15 ml/min per 1.73 m2, or kidney failure, expressed as a log-hazard ratio), where models allow interaction with variables defining disease severity. We evaluated three measures (baseline GFR in 10 ml/min per 1.73 m2, baseline urine albumin-to-creatinine ratio [UACR] per doubling in mg/g, and CKD progression rate defined as the control arm chronic slope, in ml/min per 1.73 m2/yr) and defined strong evidence for modification when 95% posterior credible intervals for interaction terms excluded zero. RESULTS: There was no evidence for modification by disease severity when evaluating 3-year total slope (95% credible intervals for the interaction slope: baseline GFR [-0.05 to 0.03]; baseline UACR [-0.02 to 0.04]; CKD progression rate [-0.07 to 0.02]). There was strong evidence for modification in evaluations of chronic slope (95% credible intervals: baseline GFR [0.02 to 0.11]; baseline UACR [-0.11 to -0.02]; CKD progression rate [0.01 to 0.15]). CONCLUSIONS: These analyses indicate consistency of the performance of total slope over 3 years, which provides further evidence for its validity as a surrogate end point in RCTs representing varied CKD populations.</p

    Acute Treatment Effects on GFR in Randomized Clinical Trials of Kidney Disease Progression

    Get PDF
    Background: Acute changes in GFR can occur after initiation of interventions targeting progression of CKD. These acute changes complicate the interpretation of long-term treatment effects. Methods: To assess the magnitude and consistency of acute effects in randomized clinical trials and explore factors that might affect them, we performed a meta-analysis of 53 randomized clinical trials for CKD progression, enrolling 56,413 participants with at least one estimated GFR measurement by 6 months after randomization. We defined acute treatment effects as the mean difference in GFR slope from baseline to 3 months between randomized groups. We performed univariable and multivariable metaregression to assess the effect of intervention type, disease state, baseline GFR, and albuminuria on the magnitude of acute effects. Results: The mean acute effect across all studies was 20.21 ml/min per 1.73 m2 (95% confidence interval, 20.63 to 0.22) over 3 months, with substantial heterogeneity across interventions (95% coverage interval across studies, 22.50 to 12.08 ml/min per 1.73 m2). We observed negative average acute effects in renin angiotensin system blockade, BP lowering, and sodium-glucose cotransporter 2 inhibitor trials, and positive acute effects in trials of immunosuppressive agents. Larger negative acute effects were observed in trials with a higher mean baseline GFR. Conclusion: The magnitude and consistency of acute GFR effects vary across different interventions, and are larger at higher baseline GFR. Understanding the nature and magnitude of acute effects can help inform the optimal design of randomized clinical trials evaluating disease progression in CKD

    A meta-analysis of GFR slope as a surrogate endpoint for kidney failure

    Full text link
    Glomerular filtration rate (GFR) decline is causally associated with kidney failure and is a candidate surrogate endpoint for clinical trials of chronic kidney disease (CKD) progression. Analyses across a diverse spectrum of interventions and populations is required for acceptance of GFR decline as an endpoint. In an analysis of individual participant data, for each of 66 studies (total of 186,312 participants), we estimated treatment effects on the total GFR slope, computed from baseline to 3 years, and chronic slope, starting at 3 months after randomization, and on the clinical endpoint (doubling of serum creatinine, GFR < 15 ml min−1 per 1.73 m2 or kidney failure with replacement therapy). We used a Bayesian mixed-effects meta-regression model to relate treatment effects on GFR slope with those on the clinical endpoint across all studies and by disease groups (diabetes, glomerular diseases, CKD or cardiovascular diseases). Treatment effects on the clinical endpoint were strongly associated with treatment effects on total slope (median coefficient of determination (R2) = 0.97 (95% Bayesian credible interval (BCI) 0.82–1.00)) and moderately associated with those on chronic slope (R2 = 0.55 (95% BCI 0.25–0.77)). There was no evidence of heterogeneity across disease. Our results support the use of total slope as a primary endpoint for clinical trials of CKD progression

    Blocking Connexin-43 mediated hemichannel activity protects against early tubular injury in experimental chronic kidney disease

    Get PDF
    Background: Tubulointerstitial fibrosis represents the key underlying pathology of Chronic Kidney Disease (CKD), yet treatment options remain limited. In this study, we investigated the role of connexin43 (Cx43) hemichannel-mediated adenosine triphosphate (ATP) release in purinergic-mediated disassembly of adherens and tight junction complexes in early tubular injury. Methods: Human primary proximal tubule epithelial cells (hPTECs) and clonal tubular epithelial cells (HK2) were treated with Transforming Growth Factor Beta1 (TGFÎČ1) ± apyrase, or ATPÎłS for 48h. For inhibitor studies, cells were co-incubated with Cx43 mimetic Peptide 5, or purinergic receptor antagonists Suramin, A438079 or A804598. Immunoblotting, single-cell force spectroscopy and trans-epithelial electrical resistance assessed protein expression, cell-cell adhesion and paracellular permeability. CarboxyïŹ‚uorescein uptake and biosensing measured hemichannel activity and real-time ATP release, whilst a heterozygous Cx43+/- mouse model with unilateral ureteral obstruction (UUO) assessed the role of Cx43 in vivo. Results: Immunohistochemistry of biopsy material from patients with diabetic nephropathy confirmed increased expression of purinergic receptor P2X7. TGFÎČ1 increased Cx43 mediated hemichannel activity and ATP release in hPTECs and HK2 cells. The cytokine reduced maximum unbinding forces and reduced cell-cell adhesion, which translated to increased paracellular permeability. Changes were reversed when cells were co-incubated with either Peptide 5 or P2-purinoceptor inhibitors. Cx43+/- mice did not exhibit protein changes associated with early tubular injury in a UUO model of fibrosis. Conclusion: Data suggest that Cx43 mediated ATP release represents an initial trigger in early tubular injury via its actions on the adherens and tight junction complex. Since Cx43 is highly expressed in nephropathy, it represents a novel target for intervention of tubulointerstitial fibrosis in CKD

    Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease: Results from the CREDENCE trial and meta-analysis

    Get PDF
    BACKGROUND AND PURPOSE: Chronic kidney disease with reduced estimated glomerular filtration rate or elevated albuminuria increases risk for ischemic and hemorrhagic stroke. This study assessed the effects of sodium glucose cotransporter 2 inhibitors (SGLT2i) on stroke and atrial fibrillation/flutter (AF/AFL) from CREDENCE (Canagliflozin and Renal Events in Diabetes With Established Nephropathy Clinical Evaluation) and a meta-Analysis of large cardiovascular outcome trials (CVOTs) of SGLT2i in type 2 diabetes mellitus. METHODS: CREDENCE randomized 4401 participants with type 2 diabetes mellitus and chronic kidney disease to canagliflozin or placebo. Post hoc, we estimated effects on fatal or nonfatal stroke, stroke subtypes, and intermediate markers of stroke risk including AF/AFL. Stroke and AF/AFL data from 3 other completed large CVOTs and CREDENCE were pooled using random-effects meta-Analysis. RESULTS: In CREDENCE, 142 participants experienced a stroke during follow-up (10.9/1000 patient-years with canagliflozin, 14.2/1000 patient-years with placebo; hazard ratio [HR], 0.77 [95% CI, 0.55-1.08]). Effects by stroke subtypes were: ischemic (HR, 0.88 [95% CI, 0.61-1.28]; n=111), hemorrhagic (HR, 0.50 [95% CI, 0.19-1.32]; n=18), and undetermined (HR, 0.54 [95% CI, 0.20-1.46]; n=17). There was no clear effect on AF/AFL (HR, 0.76 [95% CI, 0.53-1.10]; n=115). The overall effects in the 4 CVOTs combined were: Total stroke (HRpooled, 0.96 [95% CI, 0.82-1.12]), ischemic stroke (HRpooled, 1.01 [95% CI, 0.89-1.14]), hemorrhagic stroke (HRpooled, 0.50 [95% CI, 0.30-0.83]), undetermined stroke (HRpooled, 0.86 [95% CI, 0.49-1.51]), and AF/AFL (HRpooled, 0.81 [95% CI, 0.71-0.93]). There was evidence that SGLT2i effects on total stroke varied by baseline estimated glomerular filtration rate (P=0.01), with protection in the lowest estimated glomerular filtration rate (45 mL/min/1.73 m2]) subgroup (HRpooled, 0.50 [95% CI, 0.31-0.79]). CONCLUSIONS: Although we found no clear effect of SGLT2i on total stroke in CREDENCE or across trials combined, there was some evidence of benefit in preventing hemorrhagic stroke and AF/AFL, as well as total stroke for those with lowest estimated glomerular filtration rate. Future research should focus on confirming these data and exploring potential mechanisms
    • 

    corecore