23 research outputs found

    Comparison of High-Speed Operating Characteristics of Size 215 Cylindrical-Roller Bearings as Determined in Turbojet Engine and in Laboratory Test Rig

    Get PDF
    A comparison of the operating characteristics of 75-millimeter-bore (size 215) cylindrical-roller one-piece inner-race-riding cage-type bearings was made using a laboratory test rig and a turbojet engine. Cooling correlation parameters were determined by means of dimensional analysis, and the generalized results for both the inner- and outer-race bearing operating temperatures are compared for the laboratory test rig and the turbojet engine. Inner- and outer-race cooling-correlation curves were obtained for the turbojet-engine turbine-roller bearing with the same inner- and outer-race correlation parameters and exponents as those determined for the laboratory test-rig bearing. The inner- and outer-race turbine roller-bearing temperatures may be predicted from a single curve, regardless of variations in speed, load, oil flow, oil inlet temperature, oil inlet viscosity, oil-jet diameter or any combination of these parameters. The turbojet-engine turbine-roller-bearing inner-race temperatures were 30 to 60 F greater than the outer-race-maximum temperatures, the exact values depending on the operating condition and oil viscosity; these results are in contrast to the laboratory test-rig results where the inner-race temperatures were less than the outer-race-maximum temperatures. The turbojet-engine turbine-roller bearing, maximum outer-race circumferential temperature variation was approximately 30 F for each of the oils used. The effect of oil viscosity on inner- and outer-race turbojet-engine turbine-roller-bearing temperatures was found to be significant. With the lower viscosity oil (6x10(exp -7) reyns (4.9 centistokes) at 100 F; viscosity index, 83), the inner-race temperature was approximately 30 to 35 F less than with the higher viscosity oil (53x10(exp -7) reyns (42.8 centistokes) at 100 F; viscosity index, 150); whereas the outer-race-maximum temperatures were 12 to 28 F lower with the lower viscosity oil over the DN range investigated

    Lubrication and Cooling Studies of Cylindrical-Roller Bearings at High Speeds

    Get PDF
    The results of an experimental investigation of the effect of oil inlet distribution and oil inlet temperature on the inner and outer-race temperatures of 75-millimeter-bore (size 215) cylindrical-roller inner-race-riding cage-type bearings are reported. A radial-load test rig was used over a range of dn values (product of the bearing bore in mm and the shaft speed in r.p.m) from 0.3 x 10(5) to 1.2 x 10(6) and static radial loads from 7 to 1113 pounds

    Comparison of Performance of Experimental and Conventional Cage Designs and Materials for 75-millimeter-bore Cylindrical Roller Bearings at High Speed

    Get PDF
    The results of two investigations, one to determine the relative merits of four experimental and two conventional design 75-millimeter-bore (size 215) cylindrical roller bearings and one to determine the relative merits of nodular iron and bronze as cage materials for this size and type of bearing, are presented in this report. Nine test bearings were operated over a range of dn values (product of bearing bore in mm and shaft speed in r.p.m) from 0.3 x 10(6) to 2.3 x 20(6), radial loads for 7 to 1613 pounds, and oil flows from 2 to 8 pounds per minute with a single-jet circulatory oil feed. Of the six bearings used to evaluate designs, four were experimental types with outer-race-riding cages and inner-race-guided rollers, and two were conventional types, one with outer-race-guided rollers and cage and one with inner-race-guided rollers and cage. Each of these six test bearings was equipped with a different design cage made of nodular iron. The experimental combination of an outer-race-riding cage with a straight-through outer race and inner-race-guided rollers was found to give the best over-all performance based on limiting dn values and bearing temperatures

    Preliminary Comparison of 17- and 75-millimeter-bore Cageless Cylindrical Roller Bearings with Conventional Cylindrical Roller Bearings at High Speeds

    Get PDF
    Preliminary results at high speeds indicate lower bearing temperatures, less internal bearing wear, and greater reliability of the conventional, cage-type cylindrical roller bearings than of either full-complement or special cageless roller bearings of the types investigated, although the latter bearing types have been operated successfully to DN values of 1.0 X 10 superscript 6
    corecore