1,323 research outputs found

    Intergenerational redistribution of income through capital funding pension schemes: simulating the Dutch pension fund ABP

    Get PDF
    In most countries, the largest proportion of the pension benefits that are paid out to the elderly are brought together by the contributions of the active population. This type of financing is known as a Pay-As-You-Go-scheme. In this scheme, an important ‘chain of solidarity' covers for the pension of the preceding generation. So, there is a pattern of winners and losers that is caused by the rates of ageing of the populations, in combination with PAYG-pension schemes. In pension schemes based on the Capital Funding (CF) type, individuals of every generation build up a certain future pension claim. So, every generation builds up its own future pension benefit in this type of scheme. Hence, CF pension schemes are believed not to rely on income flows between generations, since every generation finances its own future pension. The advantage then is that there are no winners or losers, from the generational point of view at least, so that demographic developments cannot jeopardize the system. But, this only holds for Defined-Contribution (DC) pension systems. In practice, we also observe Defined-Benefit (DB) pension systems. In fact, the larger part of the occupational pensions schemes in the Netherlands are DB ones. For this type of schemes it holds that absence of intergenerational income flows is a too optimistic view, though the redistribution is not that strongly as in the case of PAYG schemes. The central question in this contribution is whether intergenerational redistribution of income occurs via Capital Funding in case of DB pension schemes in the Netherlands. To that end we analyse the Dutch civil servants' pension fund in the Dutch dynamic microsimulation model NEDYMAS.microsimulation; ageing; social hypotheses; poverty; inequality

    A stereoscopic ranging system using standard PC technology

    Get PDF
    A stereoscopic ranging system is currently being developed as a key source of positional information for an underwater ROV station keeping system. Advancements in PC technology make it possible to use a relatively simple image capture card and a PC as a platform for the fast capture and processing of video images. We make use of the extensive capabilities of fast data buses and the high processing power of fast PCs with Pentium II or III processors. Using this approach we are developing an image processing system that is largely manufacturer independent and promises a good path for both hardware and software upgrading in the future

    Hysteresis and re-entrant melting of a self-organized system of classical particles confined in a parabolic trap

    Full text link
    A self-organized system composed of classical particles confined in a two-dimensional parabolic trap and interacting through a potential with a short-range attractive part and long-range repulsive part is studied as function of temperature. The influence of the competition between the short-range attractive part of the inter-particle potential and its long-range repulsive part on the melting temperature is studied. Different behaviors of the melting temperature are found depending on the screening length (κ\kappa) and the strength (BB) of the attractive part of the inter-particle potential. A re-entrant behavior and a thermal induced phase transition is observed in a small region of (κ,B\kappa,B)-space. A structural hysteresis effect is observed as a function of temperature and physically understood as due to the presence of a potential barrier between different configurations of the system.Comment: 8 pages, 6 figure

    Transition from single-file to two-dimensional diffusion of interacting particles in a quasi-one-dimensional channel

    Full text link
    Diffusive properties of a monodisperse system of interacting particles confined to a \textit{quasi}-one-dimensional (Q1D) channel are studied using molecular dynamics (MD) simulations. We calculate numerically the mean-squared displacement (MSD) and investigate the influence of the width of the channel (or the strength of the confinement potential) on diffusion in finite-size channels of different shapes (i.e., straight and circular). The transition from single-file diffusion (SFD) to the two-dimensional diffusion regime is investigated. This transition (regarding the calculation of the scaling exponent (α\alpha) of the MSD tα\propto t^{\alpha}) as a function of the width of the channel, is shown to change depending on the channel's confinement profile. In particular the transition can be either smooth (i.e., for a parabolic confinement potential) or rather sharp/stepwise (i.e., for a hard-wall potential), as distinct from infinite channels where this transition is abrupt. This result can be explained by qualitatively different distributions of the particle density for the different confinement potentials.Comment: 13 pages, 11 figure

    Correlation between the optical veiling and accretion properties: A case study of the classical T Tauri star DK Tau

    Full text link
    Classical T Tauri stars (cTTs) accrete from their circumstellar disk. The material falls onto the stellar surface, producing an accretion shock, which generates veiling in a star's spectra. In addition, the shock causes a localized accretion spot at the level of the chromosphere. Our goal is to investigate the accretion, particularly the mass accretion rates (Macc), for the cTTs DK Tau, over two periods of 17 and 29 days, using two different procedures for comparison purposes. The first method relies on the derivation of the accretion luminosity via accretion-powered emission lines. The second compares the variability of the optical veiling with accretion shock models to determine mass accretion rates. We used observations taken in 2010 and 2012 with the ESPaDOnS spectropolarimeter at the CFHT. We find peak values of the veiling (at 550 nm) ranging from 0.2 to 1.3, with a steeper trend across the wavelength range for higher peak values. When using the accretion-powered emission lines, we find mass accretion rate values ranging from log(Macc[Msol/yr]) = -8.20 to log(Macc[Msol/yr]) = -7.40. This agrees with the values found in the literature, as well as the values calculated using the accretion shock models and the veiling. In addition, we identify a power-law correlation between the values of the accretion luminosity and the optical veiling. For the 2010 observations, using the values of the filling factors (which represent the area of the star covered by an accretion spot) derived from the shock models, we infer that the accretion spot was located between +45 degrees and +75 degrees in latitude. We show that both methods of determining the mass accretion rate yield similar results. We also present a helpful means of confirming the accretion luminosity values by measuring the veiling at a single wavelength in the optical

    Ramified rolling circle amplification for synthesis of nucleosomal DNA sequences

    Get PDF
    Nucleosomes are a crucial platform for the recruitment and assembly of protein complexes that process the DNA. Mechanistic and structural in vitro studies typically rely on recombinant nucleosomes that are reconstituted using artificial, strong-positioning DNA sequences. To facilitate such studies on native, genomic nucleosomes, there is a need for methods to produce any desired DNA sequence in an efficient manner. The current methods either do not offer much flexibility in choice of sequence or are less efficient in yield and labor. Here, we show that ramified rolling circle amplification (RCA) can be used to produce milligram amounts of a genomic nucleosomal DNA fragment in a scalable, one-pot reaction overnight. The protocol is efficient and flexible in choice of DNA sequence. It yields 10-fold more product than PCR, and rivals production using plasmids. We demonstrate the approach by producing the genomic DNA from the human LIN28B locus and show that it forms functional nucleosomes capable of binding pioneer transcription factor Oct4

    The Extraction of Depth Structure from Shading and Texture in the Macaque Brain

    Get PDF
    We used contrast-agent enhanced functional magnetic resonance imaging (fMRI) in the alert monkey to map the cortical regions involved in the extraction of 3D shape from the monocular static cues, texture and shading. As in the parallel human imaging study [1], we contrasted the 3D condition to several 2D control conditions. The extraction of 3D shape from texture (3D SfT) involves both ventral and parietal regions, in addition to early visual areas. Strongest activation was observed in CIP, with decreasing strength towards the anterior part of the intraparietal sulcus (IPS). In the ventral stream 3D SfT sensitivity was observed in a ventral portion of TEO. The extraction of 3D shape from shading (3D SfS) involved predominantly ventral regions, such as V4 and a dorsal potion of TEO. These results are similar to those obtained earlier in human subjects and indicate that the extraction of 3D shape from texture is performed in both ventral and dorsal regions for both species, as are the motion and disparity cues, whereas shading is mainly processed in the ventral stream
    corecore