23 research outputs found

    Identification of the allosteric binding site for thiazolopyrimidine on the C-type lectin langerin

    Get PDF
    Langerin is a mammalian C-type lectin expressed on Langerhans cells in the skin. As an innate immune cell receptor, Langerin is involved in coordinating innate and adaptive immune responses against various incoming threats. We have previously reported a series of thiazolopyrimidines as murine Langerin ligands. Prompted by the observation that its human homologue exhibits different binding specificities for these small molecules, we report here our investigations to define their exact binding site. By using structural comparison and molecular dynamics simulations, we showed that the nonconserved short loops have a high degree of conformational flexibility between the human and murine homologues. Sequence analysis and mutational studies indicated that a pair of residues are essential for the recognition of the thiazolopyrimidines. Taking solvent paramagnetic relaxation enhancement NMR studies together with a series of peptides occupying the same site, we could define the cleft between the short and long loops as the allosteric binding site for these aromatic heterocycles

    Identification of the Allosteric Binding Site for Thiazolopyrimidine on the C-Type Lectin Langerin

    Get PDF
    Langerin is a mammalian C-type lectin expressed on Langerhans cells in the skin. As an innate immune cell receptor, Langerin is involved in coordinating innate and adaptive immune responses against various incoming threats. We have previously reported a series of thiazolopyrimidines as murine Langerin ligands. Prompted by the observation that its human homologue exhibits different binding specificities for these small molecules, we report here our investigations to define their exact binding site. By using structural comparison and molecular dynamics simulations, we showed that the nonconserved short loops have a high degree of conformational flexibility between the human and murine homologues. Sequence analysis and mutational studies indicated that a pair of residues are essential for the recognition of the thiazolopyrimidines. Taking solvent paramagnetic relaxation enhancement NMR studies together with a series of peptides occupying the same site, we could define the cleft between the short and long loops as the allosteric binding site for these aromatic heterocycles

    Analysis of Process Parameters Affecting Spray-Dried Oily Core Nanocapsules Using Factorial Design

    No full text
    The purpose of this work was to optimize the process parameters required for the production of spray-dried oily core nanocapsules (NCs) with targeted size and drug yield using a two-level four-factor fractional factorial experimental design (FFED). The coded process parameters chosen were inlet temperature (X1), feed flow rate (X2), atomizing air flow (X3), and aspiration rate (X4). The produced NCs were characterized for size, yield, morphology, and powder flowability by dynamic light scattering, electron microscope, Carr’s index, and Hausner ratio measurement, respectively. The mean size of produced NCs ranged from 129.5 to 444.8 nm, with yield varying from 14.1% to 31.1%. The statistical analysis indicated an adequate model fit in predicting the effect of process parameters affecting yield. Predicted condition for maximum yield was: inlet temperature 140°C, atomizing air flow 600 L/h, feed flow rate 0.18 L/h, and aspiration air flow set at 100%, which led to a yield of 30.8%. The morphological analysis showed the existence of oily core and spherical nanostructure. The results from powder flowability analysis indicated average Carr’s index and Hausner ratio of 42.77% and 1.76, respectively. Spray-dried oily core NCs with size lower than 200 nm were successfully produced, and the FFED proved to be an effective approach in predicting the production of spray-dried NCs of targeted yield

    Diagnostic and therapeutic approach of congenital solitary coronary artery fistulas in adults: Dutch case series and review of literature

    No full text
    Background Coronary artery fistulas (CAFs) are infrequent anomalies, coincidentally detected during coronary angiography (CAG). Aim To elucidate the currently used diagnostic imaging modalities and applied therapeutic approaches. Materials and Methods Five Dutch patients were found to have CAFs. A total of 170 reviewed subjects were subdivided into two comparable groups of 85 each, treated with either percutaneous 'therapeutic' embolisation (PTE group) or surgical ligation (SL group). Results In our series, the fistulas were visualised with several diagnostic imaging tests using echocardiography, multidetector computed tomography, and CAG. Four fistulas were unilateral and one was bilateral; five originated from the left and one originated from the right coronary artery. Among the reviewed subjects, high success rates were found in both treatment groups (SL: 97% and PTE: 93%). Associated congenital or acquired cardiovascular disorders were frequently present in the SL group (23%). Bilateral fistulas were present in 11% of the SL group versus 1% of the PTE group. The fistula was ligated surgically in one and abolished percutaneously in another. Medical treatment including metoprolol was conducted in two, and watchful waiting follow-up was performed in one. Conclusions Several diagnostic imaging techniques are available for assessment of the anatomical and functional characteristics of CAFs
    corecore