100 research outputs found

    Feasibility of cardiac MR thermometry at 0.55 T

    Get PDF
    Radiofrequency catheter ablation is an established treatment strategy for ventricular tachycardia, but remains associated with a low success rate. MR guidance of ventricular tachycardia shows promises to improve the success rate of these procedures, especially due to its potential to provide real-time information on lesion formation using cardiac MR thermometry. Modern low field MRI scanners (<1 T) are of major interest for MR-guided ablations as the potential benefits include lower costs, increased patient access and device compatibility through reduced device-induced imaging artefacts and safety constraints. However, the feasibility of cardiac MR thermometry at low field remains unknown. In this study, we demonstrate the feasibility of cardiac MR thermometry at 0.55 T and characterized its in vivo stability (i.e., precision) using state-of-the-art techniques based on the proton resonance frequency shift method. Nine healthy volunteers were scanned using a cardiac MR thermometry protocol based on single-shot EPI imaging (3 slices in the left ventricle, 150 dynamics, TE = 41 ms). The reconstruction pipeline included image registration to align all the images, multi-baseline approach (look-up-table length = 30) to correct for respiration-induced phase variations, and temporal filtering to reduce noise in temperature maps. The stability of thermometry was defined as the pixel-wise standard deviation of temperature changes over time. Cardiac MR thermometry was successfully acquired in all subjects and the stability averaged across all subjects was 1.8 ± 1.0°C. Without multi-baseline correction, the overall stability was 2.8 ± 1.6°C. In conclusion, cardiac MR thermometry is feasible at 0.55 T and further studies on MR-guided catheter ablations at low field are warranted

    Automatic image-based tracking of gadolinium-filled balloon wedge catheters for MRI-guided cardiac catheterization using deep learning

    Get PDF
    IntroductionMagnetic Resonance Imaging (MRI) is a promising alternative to standard x-ray fluoroscopy for the guidance of cardiac catheterization procedures as it enables soft tissue visualization, avoids ionizing radiation and provides improved hemodynamic data. MRI-guided cardiac catheterization procedures currently require frequent manual tracking of the imaging plane during navigation to follow the tip of a gadolinium-filled balloon wedge catheter, which unnecessarily prolongs and complicates the procedures. Therefore, real-time automatic image-based detection of the catheter balloon has the potential to improve catheter visualization and navigation through automatic slice tracking.MethodsIn this study, an automatic, parameter-free, deep-learning-based post-processing pipeline was developed for real-time detection of the catheter balloon. A U-Net architecture with a ResNet-34 encoder was trained on semi-artificial images for the segmentation of the catheter balloon. Post-processing steps were implemented to guarantee a unique estimate of the catheter tip coordinates. This approach was evaluated retrospectively in 7 patients (6M and 1F, age = 7 ± 5 year) who underwent an MRI-guided right heart catheterization procedure with all images acquired in an orientation unseen during training.ResultsThe overall accuracy, specificity and sensitivity of the proposed catheter tracking strategy over all 7 patients were 98.4 ± 2.0%, 99.9 ± 0.2% and 95.4 ± 5.5%, respectively. The computation time of the deep-learning-based segmentation step was ∼10 ms/image, indicating its compatibility with real-time constraints.ConclusionDeep-learning-based catheter balloon tracking is feasible, accurate, parameter-free, and compatible with real-time conditions. Online integration of the technique and its evaluation in a larger patient cohort are now warranted to determine its benefit during MRI-guided cardiac catheterization

    Manifold-driven Grouping of Skeletal Muscle Fibers

    Get PDF
    In this report, we present a manifold clustering method for the classification of fibers obtained from diffusion tensor images (DTI) of the human skeletal muscle. To this end, we propose the use of angular Hilbertian metrics between multivariate normal distributions to define a family of distances between tensors that we generalize to fibers. The obtained metrics between fiber tracts encompasses both diffusion and localization information. As far as clustering is concerned, we use two methods. The first approach is based on diffusion maps and k-means clustering in the spectral embedding space. The second approach uses a linear programming formulation of prototype-based clustering. This formulation allows for classification over manifolds without the necessity to embed the data in low dimensional spaces and determines automatically the number of clusters. The experimental validation of the proposed framework is done using a manually annotated significant dataset of DTI of the calf muscle for healthy and diseased subjects
    • …
    corecore