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Aims Left atrial volume is commonly estimated using the bi-plane area-length method from two-chamber (2CH) and four-cham-
ber (4CH) long axes views. However, this can be inaccurate due to a violation of geometric assumptions. We aimed to de-
velop a deep learning neural network to infer 3D left atrial shape, volume and surface area from 2CH and 4CH views.

Methods
and results

A 3DUNet was trained and tested using 2CH and 4CH segmentations generated from 3D coronary computed tomography
angiography (CCTA) segmentations (n= 1700, with 1400/100/200 cases for training/validating/testing). An independent test
dataset from another institution was also evaluated, using cardiac magnetic resonance (CMR) 2CH and 4CH segmentations
as input and 3D CCTA segmentations as the ground truth (n= 20). For the 200 test cases generated from CCTA, the net-
work achieved a mean Dice score value of 93.7%, showing excellent 3D shape reconstruction from two views compared
with the 3D segmentation Dice of 97.4%. The network also showed significantly lower mean absolute error values of
3.5 mL/4.9 cm2 for LA volume/surface area respectively compared to the area-length method errors of 13.0 mL/
34.1 cm2 respectively (P< 0.05 for both). For the independent CMR test set, the network achieved accurate 3D shape es-
timation (mean Dice score value of 87.4%), and a mean absolute error values of 6.0 mL/5.7 cm2 for left atrial volume/surface
area respectively, significantly less than the area-length method errors of 14.2 mL/19.3 cm2 respectively (P< 0.05 for both).

Conclusions Compared to the bi-plane area-length method, the network showed higher accuracy and robustness for both volume and
surface area.
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Graphical Abstract

Keywords left atrial volume • machine learning • cardiovascular magnetic resonance

Introduction
Left atrial (LA) volume is an important prognostic indicator of adverse
events in patients with cardiovascular disease, including atrial fibrilla-
tion1 and heart failure.2 In addition, LA surface area3 and shape4 may
provide additional prognostic value. However, volumetric data are of-
ten unavailable, due to scan time and resource constraints. LA volumes
are commonly estimated using the bi-plane area-length method from
two-chamber (2CH) and four-chamber (4CH) long axis cine images
which are routinely acquired with echocardiography or cardiovascular
magnetic resonance (CMR).1,5,6 Due to the limitations of the geometric
assumptions (including a regular ellipsoidal LA shape), the bi-plane area-
length method may lead to large volume errors, and surface area and
shape are not well characterized. A more robust and accurate method
for estimating LA volume and shape would enable better characteriza-
tion of patients from routinely acquired 2CH and 4CH views, identify
which patients may benefit from additional investigation (e.g. volumet-
ric atrial imaging), and more precisely evaluate longitudinal changes
from previous scans.

Recent advances in convolutional neural networks show promise in
reconstructing 3D shapes from sparse or incomplete input data
through label-to-label mapping.7,8 We sought to determine whether
3D LA shape reconstruction from 2CH and 4CH cine views would en-
able a more accurate estimation of LA volume and surface area.
Automated analysis of LA 3D volume from standard long axis planes
would enable in-line application at the time of scanning and highlight
which patients may benefit from further examination.

In this study, we developed a deep learning algorithm to accurately
estimate LA volume and surface area by reconstructing the 3D shape
of the LA from 2CH and 4CH image segmentations. Since the

method was designed to work from 2CH and 4CH segmentations,
independent from image contrast, we trained and validated our
method using 2CH and 4CH segmentations generated from 3D cor-
onary computed tomography angiography (CCTA) exams, in loca-
tions matching CMR view orientations and allowing for motion
between the two scans due to differences in breath-hold positions.
This approach enables the network to learn the underlying 3D
geometry from the sparse 2CH and 4CH information, and to correct
for motion between scans, since the ground truth is known exactly.
We then tested the method in an external test dataset comprising
CMR 2CH and 4CH acquisitions, against paired CCTA acquisitions.
We hypothesized that the network would be able to estimate LA
volume more accurately than area-length methods, and would also
be able to estimate LA surface area.

Methods
In this retrospective study, we trained and tested the network using accurate
ground truth 3D segmentations obtained fromCCTA in 1700 patientswith sus-
pected coronary artery disease, by simulating 2CH and 4CH slice segmentations
together with random errors in slice and breath-hold positioning (motion arte-
fact common in CMR).We also tested themethod in an independent cohort of
20 patients with paired CMR and CCTA exams, using the CMR 2CH and 4CH
segmentations as input and the 3D CCTA as the ground truth. Figure 1 shows
the overview of our method, including the training and inferencing stages, with
examples of a variety of predicted LA shapes obtained from the network.

The training stage consisted of three steps. Firstly, 3D CCTA images were
segmented with LV, LA, LA appendage, left pulmonary vein, and right pul-
monary vein labels. Secondly, 2CH and 4CH label maps with only LV and
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LA labels were generated from segmentedCCTA images, using an online aug-
mentation process that added random offsets in 2CH/4CH orientations and
positions, consistent with slice planning variation and breath-holdmisregistra-
tion artefacts common in CMR, for each epoch of the training stage. The la-
bels were then transferred to a normalized 3D space defined by the position
and orientation of the augmented 2CH and 4CH planes. Thirdly, the sparse
input label map volumewas converted to a dense label map by the label com-
pletion network, giving dense volumetric label maps of the LA, LV, left/right
pulmonary veins, and LA appendage.

Similarly, the inference stage consisted of four steps. Firstly, the 2CH
and 4CH CMR images were segmented, giving 2D LV and LA blood
pool label maps for each view. The 2D label maps were then transferred
to the normalized 3D space. The sparse input label map volume was then
converted to a dense label map by the label completion network, giving
dense volumetric label maps of the LA, LV, left/right pulmonary veins,
and LA appendage. Finally, the LA volume was calculated from the dense
label maps with voxel summation, and the LA surface area was evaluated
from a marching cube surface representation computed from the dense
label map. Since the method works on segmentations, not original images,
the same inferencing workflow can be applied to test datasets generated
from both CCTA and CMR acquisitions.

The following sections describe each stage in more detail.

Datasets
All data were anonymized in accordance with GDPR protocols prior to
the study. The network was trained and validated using 3D LA shapes
obtained from 1700 segmented CCTA images (label maps) of patients
who participated in the Scottish Computed Tomography of the Heart
(SCOT-HEART) trial.9 Briefly, all patients had suspected angina attributable
to coronary artery disease and were imaged between 2010 and 2014 at one
of three sites using either 64- or 320-detector row scanners (Brilliance 64,
Philips Medical Systems, Netherlands; Biograph mCT, Siemens, Germany;
Aquilion ONE, Toshiba Medical Systems, Japan). Tube current, voltage,
and volume of iodine-based contrast were adjusted based on body mass

index.10 Of the 1768 SCOT-HEART cases with adequate CCTA, 68 cases
were removed due to poor segmentations from the automated segmenta-
tion process.10

An independent cohort of 20 cases from an external site (not part of
SCOT-HEART) was also used to evaluate the method. CMR 2CH and
4CH image segmentations were used as input and 3DCCTA segmentations
were used as the ground truth. Similar to the SCOT-HEART cohort, these
patients had suspected angina attributable to coronary artery disease. They
were imaged between 2017 and 2020 with an average of 2.5 months be-
tween CCTA and CMR scans. The CT scanners were Aquilion ONE,
Toshiba Medical Systems, Japan, and the MR scanners were Aera and
Avanto-fit, Siemens, Germany.

CCTA training and testing data
The CCTA images were segmented automatically using a previously de-
scribed and validated 3D convolutional neural network.10 This provided
ten labels, including LA, LV, RV, left/right pulmonary veins, and LA append-
age, with a Dice score of 97.4% for the LA compared with manual segmen-
tations.10 The 3D segmentations were reviewed visually to ensure high
quality. We generated 2CH and 4CH long axis views from the 3D label
maps, in the same orientations acquired in CMR exams, including the poten-
tial for patient motion between the two scans, as follows.

Firstly, the plane passing through the centroid of the mitral valve, the cen-
troid of the tricuspid valve, and the LV apex, was defined as the 4CH view.
Secondly, we calculated the centroid of the right ventricle (RV), and the
plane that passes through the centroid of mitral valve, the apical point,
and the plane normal in the direction of the centroid of the RV was defined
as the 2CH view. The long axis was the intersecting line of the two views,
which passes through the centroid of mitral valve and the apical point. A
normalized 3D LA-centric coordinate system was defined using the long
axis, the normal vector of the 4CH view (front-to-back), and the cross
product of the two (left-to-right), as axes, taking the centroid of the LA
as the origin. The definitions of the 2CH and 4CH views are shown in
Figure 2. A volume with voxel spacing of 1 mm3 and the size of 1283 was

Figure 1 Overall pipeline. The green, red, blue, yellow and brown labels are the LV, LA, LA appendage, left pulmonary vein and right pulmonary vein
respectively. Top: Training pipeline using CCTA. Middle: Inferencing pipeline using CMR. Bottom: examples of a variety of network outputs.
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generated based on the LA coordinates and centred at the origin. The five
labels of interest (LA, LV, left/right pulmonary veins, and LA appendage)
were then resampled to the normalized coordinates and considered as
the reference dense volume. When preparing the dense volume, we also
introduced errors in the origin and long axis orientation to simulate vari-
ation in real MR slice planning, by applying a random translation offset within
±10 pixels along each axis, a random rotation within ±10°around each axis.

To generate the sparse input volume, we first prepared a binary mask for
each of the long axis planes by labelling voxels further than 1 mm from the
plane as 0 (background). A random rotation offset within ±15°of the 2CH
view around the long axis was applied to augment the angle between 2CH
and 4CH views, simulating variation in real MR slice planning. We also simu-
lated the effect of breath-hold motion artefacts when generating the input
sparse volume. We added a Gaussian distributed random offset with a
mean of 1.6 mm and standard variance of 0.62 mm along each axis, esti-
mated from measured breath-hold motions within the UK Biobank data-
set,11 to the label map volume before applying voxel-wise multiplication
between the binary mask and misaligned volume. The 2CH and 4CH sparse
volumes are finally fused to form the input sparse volume, and the intersect-
ing voxels take labels from the 2CH view. Since only the LV and LA labels
are commonly segmented for 2CH and 4CH CMR images, we only kept
these two labels and removed others from the input volume. Typical sparse
volume examples are shown in Figure 1.

We used 1400 cases to train the network parameters, and 100 cases for
validation of the optimized network parameters (to monitor overfitting).
The remaining 200 cases were used to test the performance of the net-
work, compared to 3D ground truth and the area-length method. The split
was performed randomly, with approximately the same demographic and
disease proportions in each group. The same offset process, simulating
breath-hold motion and positioning errors, was applied to the 200 testing
cases to generate input sparse volumes, in order to evaluate the perform-
ance of the label completion network.

Paired CMR and CCTA test data
The LV and LA labels were first segmented manually from the CMR images
using ITK-SNAP (itksnap.org), and transformed into the reference sparse 3D
volume in the same way as above. CMR images consisted of multiple frames

and the frame with the closest time to the CCTA scan (relative to the R
wave) was chosen to build the input sparse volume. The paired CCTA
images were segmented automatically using the previously described seg-
mentation network .10

LA volume and surface area
The bi-plane area-length method12 calculates the LA volume using the areas
of the LA and lengths of the LA (usually defined as the distance from the
mitral valve to the furthest point of LA) from 2CH and 4CH images:

LA volume =
8 × A2CH × A4CH

3πL

where A2CH and A4CH are the areas of the LA calculated from 2D segmen-
tations, and L is the length of LA. The geometric assumptions of the area-
length method include: (1) the LA shape is an ellipsoid; (2) the 2CH and
4CH are perpendicular; (3) the LA length is along the long axis. In this study
we compared two definitions of the LA length, and for each definition we
used the shorter length, mean value, and longer length of the two views to
calculate the volume. The traditional definition calculates the lengths inde-
pendently for each view and measures the distance from the mitral valve to
the furthest point of LA. This was widely applied in echocardiography as the
long axis is not available, and then was adapted to CMR images. We also
tested a modified definition of the LA length as the intersecting distance
along the long axis of the two views, taking the advantage that the CMR im-
aging planes are known.

We calculated a LA surface area based on the same geometric assump-
tions, using principal semiaxes calculated from A2CH, A4CH, and L:

a =
A2CH
πL

b =
A4CH
πL

The surface area of the LA was then estimated using Knud Thomsen’s for-
mula with p= 1.6 as:

Figure 2 Definition of the 2CH and 4CH views. The green, yellow, and pink segments are LV, LV myocardium and RV. The yellow, orange, blue and
green points are the centroid of mitral valve, the centroid of tricuspid valve, the centroid of RV and the apex. The solid red and blue lines indicate the
4CH and 2CH views visualized along the long axis. The solid blue line is perpendicular to the dotted blue line passing through the centroids of RV and
mitral valve.
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LA area = 4π ×
(a × b)1.6 + (a × L)1.6 + (b × L)1.6

3

( )1/1.6

For volumetric data, we calculated the volume by summing the voxels with
the LA label and multiply by the corresponding voxel volume, which is
1 mm3. We calculated the mesh surface area generated from the LA label
map using the marching cubes algorithm, after the surface was first passed
through a 3D Lanczos kernel to filter out the high-frequency noise intro-
duced through interpolation and resampling.

The estimated surface area from the area-length method includes the en-
tire LA. However, intersections with the LV (i.e. mitral valve area), pulmon-
ary veins, and LA appendage will reduce this area estimate. In atrial
fibrillation patients, this reduced area estimate is likely to be more inform-
ative since it contains only the LA muscle wall area.3 Therefore, we calcu-
lated two different types of LA areas from the dense label maps. The first
one is the total LA surface area, corresponding to the area-length method.
The second one removed the intersections between the LA and other la-
bels, and this area measures the surface of the atrial wall only. This was
done by first finding the voxels touching voxels with other labels (e.g. mitral
valve, LA appendage, and pulmonary veins) and removing these from the
marching cubes surface area calculation.

Label completion network design and training
A 3D U-Net13 was implemented as the label completion network using py-
torch 1.81. This was designed to take a sparse label input consisting of three
labels (background (0), LA (1), and LV (2)), and to output a dense label map
consisting of five labels (background (0), LA (1), LV (2), left pulmonary veins

(3), right pulmonary vein (4), and LA appendage (5)). The network had four
spatial resolutions, and the convolutional kernels had the size of 3× 3× 3
with the number of (16, 32), (32, 64), (64, 128), and (128, 256) in the en-
coder and bottle neck, and (128, 128), (64, 64), (32, 5) in the decoder.
Max-pooling and deconvolution with a stride of 2× 2× 2 were used for
contraction and expansion. The Adam optimization10 with a learning rate
of 10−3 was used for training and Dice score of the LA was used for training
and evaluation of the network. Weight initialization was random using de-
fault PyTorch settings for individual layers. Augmentation was performed
during each epoch to create a larger training set.

LA shape
The Dice metric was used to evaluate differences in LA shape. This mea-
sures the overlap in voxels between the prediction and the ground truth
as a percentage of the object size. The largest connected component of
the LA label was first extracted from the output of the network before
the volume and Dice score were calculated. To correct for offsets between
the output LA shape and the ground truth LA shape due to breath-hold
misregistration, a rigid alignment14 was applied to map the prediction to
the ground truth (i.e. translation and rotation). The rigid alignment was per-
formed by minimizing the differences between signed distance maps com-
puted from both segmentations, applying rotations and translations to one
shape to match the other. This was applied to the predicted LA label map
before the calculation of the Dice score, to ensure that the Dice metric was
sensitive to changes in shape only.

Statistics
Absolute errors in volume and surface area were compared between the
network and bi-plane area-length method using a paired t-test.
Differences in Dice score between patient sub-groups were compared
using unpaired t-tests. Normality was tested using the Chi Square test at
a 95% confidence level. Non-normal data were compared using the
Mann–Whitney U test. A P value of 0.05 was considered significant.

Results
Study population characteristics
The study population characteristics are summarised in Table 1. The
statistics of the LA sizes from CCTA for the two test cohorts, i.e. 20

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 LA size distributions (from CCTA)

LA volume
(ml)

Total LA
area (cm2)

LA wall
area (cm2)

CMR+CCTA n= 20 92.5± 30.8 115.3± 20.8 81.5± 17.1

CCTA Test n= 200 82.3± 23.5 121.8± 24.2 88.6± 18.9

Values are presented as mean ± standard deviation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Study population characteristics. Values are
presented as mean± standard deviation or (% with
respect to number of total number of cases)

CCTA n=1700 CMR+CCTA n= 20

Age (years) 57.6± 9.5 62.0± 8.7

Male 955 (56%) 11 (55%)

Weight (kg) 85.4± 17.7 84.5± 17.3

Height (m) 1.70± 0.10 1.68± 0.08

BMI (kg/m2) 29.6± 5.5 29.7± 4.8

AF 30 (2%) NA

Diabetes 185 (11%) NA

CHD 166 (10%) 10 (50%)

Hypertension 582 (34%) NA

AF, atrial fibrillation; BMI, body mass index; CHD, coronary heart disease. NA, not
available.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Dice scores and test results of groups with/
without AF, male/female, with/without diabetes, with/
without CHD, and with/without hypertension (n=200
test cases from CCTA cohort)

Group Dice score (%) P-value

AF Yes (n= 5) 94.3± 1.2 0.42

No (n= 195) 93.7± 1.8

Sex Male (n= 123) 93.7± 1.9 0.90

Female (n= 77) 93.7± 1.5

Diabetes Yes (n= 26) 94.1± 1.2 0.24

No (n= 174) 93.7± 1.8

CHD Yes (n= 20) 94.0± 2.0 0.52

No (n= 180) 93.7± 1.7

Hypertension Yes (n= 65) 94.0± 1.5 0.08

No (n= 133) 93.6± 1.8

Dice score values are presented as mean ± standard deviation.
AF, atrial fibrillation; CHD, coronary heart disease.
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test cases with paired CMR images and the 200 test cases with CCTA
images are summarized in Table 2.

CCTA test cases
On the 200 randomly selected test cases, the Dice score of the LA had
a mean value of 93.7%, a standard deviation of 1.7%, and an inter-
quartile range of 1.9%. This result implies excellent 3D shape recovery
from two views compared with the 3D shape obtained with the 3D
segmentation CNN. In order to test if disease sub-groups had any im-
pact on the shape reconstruction accuracy, we performed t-tests for
differences in Dice between sub-groups of sex, atrial fibrillation, dia-
betes, coronary heart disease, and hypertension history and found no
significant differences between any of the groups (Table 3).

The absolute and signed errors of the modified area-length method
and network reconstruction estimations are shown in Table 4. The se-
lection of the best area-length method is detailed in the Supplementary

Materials, and our modified area-length method was the most accurate
and robust out of all the variations tested.

The network estimated the total LA volume with a nearly three-fold
reduction in mean absolute error relative to the area-length method
(P< 0.05), and reduced the total surface area mean absolute error by
nearly seven-fold (P< 0.05).

External CMR validation
TheDice score of the LA had amean value of 87.4%, a standard deviation
of 3.4%, and an inter-quartile range of 3.3%. The absolute and signed er-
rors between the network reconstructed LA size from real CMR seg-
mentations and the reference LA size calculated from paired CCTA
segmentations of the 20 cases used for validation are shown in Table 5.

The network estimated the total LA volumewith over two-fold reduction
inmean absolute error relative to the area-lengthmethod (P<0.05), and the
reduced total surface area mean absolute error by three-fold (P<0.05).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5 LA size estimation accuracy n=20 external
CMR dataset

LA volume (ml) LA area
(total)
(cm2)

LA area
(wall)
(cm2)

Area-length

method

AE 14.2± 10.9 19.3± 19.6 NA

SE −11.3± 14.0 2.1± 27.8 NA

Network

reconstruction

AE 6.0± 6.3* 5.7± 4.1* 7.2± 5.1

SE −0.2± 8.8 0.9± 7.1 −6.5± 6.0

Values are presented as mean (standard deviation).
AE, absolute error; SE, signed error.
*P< 0.05 network vs. area-length method.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 LA size estimation accuracy (n=200 test cases
generated from CCTA)

LA volume
(ml)

Total LA
area (cm2)

LA wall
area (cm2)

Area-length

method

AE 13.0± 12.5 34.1± 50.4 NA

SE 7.3± 16.4 20.7± 57.2 NA

Network

reconstruction

AE 3.5± 3.2* 4.9± 3.6* 4.2± 2.9

SE −0.8± 4.6 4.1± 4.5 −3.2± 4.0

Values are presented as mean ± standard deviation.
AE, absolute error; SE, signed error. NA, not applicable.
*P< 0.05 network vs. area-length method.

Figure 3 Bland-Altman plots. Plots show errors for the LA volume, LA wall area and total LA area for network and area-length methods (CMR
completion vs. CCTA ground truth). The black line indicates the mean difference between measurements. The upper and lower dashed red lines in-
dicate the ±1.96 standard deviation of the difference between measurements away from the mean value.
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Bland-Altman plots of the LA volume, total LA area, and LA wall area
for both network and area-length methods, compared with 3D ground
truth, are shown in Figure 3. The differences between the measure-
ments were calculated by subtracting the predicted values from the ref-
erence values. The bias for the network was small, with the largest
mean bias shown for the LA wall area of 6.5 cm2. The limits of agree-
ment were substantially reduced for the network compared with the
area-length method.

Figure 4 illustrates the best, median, and worst cases for the CCTA
and CMR test sets. In general, performance dropped if the 4CH and
2CH slices did not pass through the centre of the LA due to either slice
positioning error, or tilting of the LA relative to the long axis of the LV.

Discussion
In this study, we have developed an automated method for LA assess-
ment from standard 2CH and 4CH views, which are typically acquired

in all CMR exams. This additional information will add value to standard
CMR protocols by providing more accurate and robust LA volume, sur-
face area, and shape from standard views. This estimate could be used
to rapidly flag cases in which a more detailed assessment is indicated,
e.g. including atrial fibrosis mapping. Alternatively, the method could
be used to efficiently monitor the effects of treatment on LA size
and shape.

Area-length method
Unlike echocardiography, the position and orientation of CMR images
are known in patient coordinates. We proposed a LA length definition
based on the long axis for CMR images, and the accuracy and robust-
ness of the area-length method were improved as it was more robust
to errors in slice positioning than the standardmethod of estimating the
length independently from 2CH and 4CH views. However, the per-
formance of the area-length method was limited by the geometric as-
sumptions. Figure 1 illustrates the large variation of the LA shapes,

Figure 4 (A) Best, median and worst-case examples from CCTA test cases. (B) Best, median and worst-case examples from CMR test cases.
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and the geometric assumption that LA is an ellipsoid is not strongly sup-
ported. By assuming the long axis aligns with one of the semi-axes, and
that each of the 2CH and 4CH views contain another semi-axis of the
ellipsoid, the two views are assumed to be perpendicular to each other,
which may not be valid for typical CMR images.

3D Label map completion
The LA shape reconstruction network was much more accurate for
both generated CCTA and external CMR test cases compared to the
area-length method, and both the bias (signed difference) and absolute
error of the estimated LA size were dramatically reduced. The key ad-
vantage of our deep learning method, which is also the main reason for
the better performance, is that it has no geometric assumptions and
adapts to a larger variation of the LA shapes while being robust to er-
rors in the position of the 2CH and 4CH imaging planes.

The reconstruction network showed similar Dice scores to those
obtained by 3D CCTA segmentation networks (typically 91–93%
for the LA) in the Multi-Modality Whole Heart Segmentation chal-
lenge.15 Compared to 3D CCTA segmentation, reconstructing 3D la-
bel maps from 2D segmentations of 2CH and 4CH views has
substantially fewer input features and suffers from misalignment be-
tween the two views.

In order to estimate the LA wall area (total LA surface area minus
intersections with the LA appendage and pulmonary veins) we pre-
dicted 5 labels (background, LA, LV, left and right pulmonary veins,
and LA appendage). The predicted LA appendage and pulmonary veins
themselves are not as accurate, since the network must learn how to
interpolate the training data regions according to features provided
by the input data, which was limited to LA and LV labels only. In order
to check whether predicting 5 labels results in a degradation of per-
formance for prediction of the LA, we trained another network to pre-
dict just the LA 3D structure from the LA and LV slice input. The LA
Dice was 93.8% on the 200 CCTA test cases, similar to the 93.7% ob-
tained from the 5-label prediction network (P=NS).

Figure 4 shows worst case predictions for both CCTA and CMR test
datasets. In general, performance was degraded if the long axis slices
missed the main body of the LA. This was due partly to slice positioning
error but also to the typical practice of planning of 2CH and 4CH views
to maximise the length of the LV rather than the LA. Kebed et al.16

noted that planning views to maximize the LA longitudinal dimension
can give more accurate results.

Limitations
The mean absolute errors of the label completion network on the
external CMR test dataset were somewhat larger than for the 200
test cases generated from CCTA. This is likely due to different load-
ing conditions between the CMR and CCTA exams (mean of 2.5
months gap between the two scans), and errors in matching a
CMR frame to the CCTA. Even with the difficulties listed above,
the LA shape reconstruction network shows good results, suggesting
the network is able to estimate geometry from two views in the
presence of variation in slice positioning and the breath-hold mis-
alignment between views.

This study used manual segmentations of the 2CH and 4CH cine
views since the purpose of the study was to validate the reconstruction
of 3D geometry rather than the accuracy of the segmentations.
However, accurate fully automated methods for segmenting LA and
LV from 2CH and 4CH images are becoming available,17 and could
be combined with the current method to enable fully automated ana-
lysis of LA shape and volume at the time of scanning. In-line evaluation
on the scanner would give immediate feedback of results, enabling the
immediate acquisition of more detailed scans if warranted. Further
studies are needed in larger cohorts to determine the prognostic ability
of derived values.

Conclusions
In this study, we developed a deep learning method for estimating the
LA volume and surface area by reconstructing the LA shape from 2CH
and 4CH CMR image segmentations. Compared with the standard bi-
plane area-length method the network showed a much higher accuracy
and robustness. Therefore, this method provides a better evaluation of
the LA from routine acquisitions, and can be widely deployed in a fully
automated pipeline.

Supplementary material
Supplementary materials are available at European Heart Journal -
Cardiovascular Imaging online.
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