49 research outputs found
Extinction transition in bacterial colonies under forced convection
We report the spatio-temporal response of {\it Bacillus subtilis} growing on
a nutrient-rich layer of agar to ultra-violet (UV) radiation. Below a crossover
temperature, the bacteria are confined to regions that are shielded from UV
radiation. A forced convection of the population is effected by rotating a UV
radiation shield relative to the petri dish. The extinction speed at which the
bacterial colony lags behind the shield is found to be qualitatively similar to
the front velocity of the colony growing in the absence of the hostile
environment as predicted by the model of Dahmen, Nelson and Shnerb. A
quantitative comparison is not possible without considering the slow dynamics
and the time-dependent interaction of the population with the hostile
environment.Comment: 4 pages, 4 figures, further information at
http://physics.clarku.edu/~akudrolli/nls.htm
Periodic orbit analysis of an elastodynamic resonator using shape deformation
We report the first definitive experimental observation of periodic orbits
(POs) in the spectral properties of an elastodynamic system. The Fourier
transform of the density of flexural modes show peaks that correspond to stable
and unstable POs of a clover shaped quartz plate. We change the shape of the
plate and find that the peaks corresponding to the POs that hit only the
unperturbed sides are unchanged proving the correspondence. However, an exact
match to the length of the main POs could be made only after a small rescaling
of the experimental results. Statistical analysis of the level dynamics also
shows the effect of the stable POs.Comment: submitted to Europhysics Letter
Hierarchical population model with a carrying capacity distribution
A time- and space-discrete model for the growth of a rapidly saturating local
biological population is derived from a hierarchical random deposition
process previously studied in statistical physics. Two biologically relevant
parameters, the probabilities of birth, , and of death, , determine the
carrying capacity . Due to the randomness the population depends strongly on
position, , and there is a distribution of carrying capacities, .
This distribution has self-similar character owing to the imposed hierarchy.
The most probable carrying capacity and its probability are studied as a
function of and . The effective growth rate decreases with time, roughly
as in a Verhulst process. The model is possibly applicable, for example, to
bacteria forming a "towering pillar" biofilm. The bacteria divide on randomly
distributed nutrient-rich regions and are exposed to random local bactericidal
agent (antibiotic spray). A gradual overall temperature change away from
optimal growth conditions, for instance, reduces bacterial reproduction, while
biofilm development degrades antimicrobial susceptibility, causing stagnation
into a stationary state.Comment: 25 pages, 11 (9+2) figure
Active nematics on a substrate: giant number fluctuations and long-time tails
We construct the equations of motion for the coupled dynamics of order
parameter and concentration for the nematic phase of driven particles on a
solid surface, and show that they imply (i) giant number fluctuations, with a
standard deviation proportional to the mean and (ii) long-time tails in the autocorrelation of the particle velocities in dimensions
despite the absence of a hydrodynamic velocity field. Our predictions can be
tested in experiments on aggregates of amoeboid cells as well as on layers of
agitated granular matter.Comment: Submitted to Europhys Lett 26 Aug 200
Vortices in vibrated granular rods
We report the experimental observation of novel vortex patterns in vertically
vibrated granular rods. Above a critical packing fraction, moving ordered
domains of nearly vertical rods spontaneously form and coexist with horizontal
rods. The domains of vertical rods coarsen in time to form large vortices. We
investigate the conditions under which the vortices occur by varying the number
of rods, vibration amplitude and frequency. The size of the vortices increases
with the number of rods. We characterize the growth of the ordered domains by
measuring the area fraction of the ordered regions as a function of time. A
{\em void filling} model is presented to describe the nucleation and growth of
the vertical domains. We track the ends of the vertical rods and obtain the
velocity fields of the vortices. The rotation speed of the rods is observed to
depend on the vibration velocity of the container and on the packing. To
investigate the impact of the direction of driving on the observed phenomena,
we performed experiments with the container vibrated horizontally. Although
vertical domains form, vortices are not observed. We therefore argue that the
motion is generated due to the interaction of the inclination of the rods with
the bottom of a vertically vibrated container. We also perform simple
experiments with a single row of rods in an annulus. These experiments directly
demonstrate that the rod motion is generated when the rods are inclined from
the vertical, and is always in the direction of the inclination.Comment: 6 pages, 10 figure, 2 movies at http://physics.clarku.edu/vortex uses
revtex
PCA-based lung motion model
Organ motion induced by respiration may cause clinically significant
targeting errors and greatly degrade the effectiveness of conformal
radiotherapy. It is therefore crucial to be able to model respiratory motion
accurately. A recently proposed lung motion model based on principal component
analysis (PCA) has been shown to be promising on a few patients. However, there
is still a need to understand the underlying reason why it works. In this
paper, we present a much deeper and detailed analysis of the PCA-based lung
motion model. We provide the theoretical justification of the effectiveness of
PCA in modeling lung motion. We also prove that under certain conditions, the
PCA motion model is equivalent to 5D motion model, which is based on physiology
and anatomy of the lung. The modeling power of PCA model was tested on clinical
data and the average 3D error was found to be below 1 mm.Comment: 4 pages, 1 figure. submitted to International Conference on the use
of Computers in Radiation Therapy 201
Population dynamics in compressible flows
Organisms often grow, migrate and compete in liquid environments, as well as
on solid surfaces. However, relatively little is known about what happens when
competing species are mixed and compressed by fluid turbulence. In these
lectures we review our recent work on population dynamics and population
genetics in compressible velocity fields of one and two dimensions. We discuss
why compressible turbulence is relevant for population dynamics in the ocean
and we consider cases both where the velocity field is turbulent and when it is
static. Furthermore, we investigate populations in terms of a continuos density
field and when the populations are treated via discrete particles. In the last
case we focus on the competition and fixation of one species compared to
anotherComment: 16 pages, talk delivered at the Geilo Winter School 201
Speed of reaction-transport processes
We present an approach to determining the speed of wave-front solutions to reaction-transport processes. This method is more accurate than previous ones. This is explicitly shown for several cases of practical interest: (i) the anomalous diffusion reaction, (ii) reaction diffusion in an advective field, and (iii) time-delayed reaction diffusion. There is good agreement with the results of numerical simulations
Real-Time Profiling of Respiratory Motion: Baseline Drift, Frequency Variation and Fundamental Pattern Change
To precisely ablate tumor in radiation therapy, it is important to locate the tumor position in real time during treatment. However, respiration-induced tumor motions are difficult to track. They are semi-periodic and exhibit variations in baseline, frequency and fundamental pattern (oscillatory amplitude and shape). In this study, we try to decompose the above-mentioned components from discrete observations in real time. Baseline drift, frequency (equivalently phase) variation and fundamental pattern change characterize different aspects of respiratory motion and have distinctive clinical indications. Furthermore, smoothness is a valid assumption for each one of these components in their own spaces, and facilitates effective extrapolation for the purpose of estimation and prediction. We call this process 'profiling' to reflect the integration of information extraction, decomposition, processing and recovery. The proposed method has three major ingredients: (1) real-time baseline and phase estimation based on elliptical shape tracking in augmented state space and Poincaré sectioning principle; (2) estimation of the fundamental pattern by unwarping the observation with phase estimate from the previous step; (3) filtering of individual components and assembly in the original temporal-displacement signal space. We tested the proposed method with both simulated and clinical data. For the purpose of prediction, the results are comparable to what one would expect from a human operator. The proposed approach is fully unsupervised and data driven, making it ideal for applications requiring economy, efficiency and flexibility.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85908/1/Fessler14.pd
Verifying 4D gated radiotherapy using time-integrated electronic portal imaging: a phantom and clinical study
<p>Abstract</p> <p>Background</p> <p>Respiration-gated radiotherapy (RGRT) can decrease treatment toxicity by allowing for smaller treatment volumes for mobile tumors. RGRT is commonly performed using external surrogates of tumor motion. We describe the use of time-integrated electronic portal imaging (TI-EPI) to verify the position of internal structures during RGRT delivery</p> <p>Methods</p> <p>TI-EPI portals were generated by continuously collecting exit dose data (aSi500 EPID, Portal vision, Varian Medical Systems) when a respiratory motion phantom was irradiated during expiration, inspiration and free breathing phases. RGRT was delivered using the Varian RPM system, and grey value profile plots over a fixed trajectory were used to study object positions. Time-related positional information was derived by subtracting grey values from TI-EPI portals sharing the pixel matrix. TI-EPI portals were also collected in 2 patients undergoing RPM-triggered RGRT for a lung and hepatic tumor (with fiducial markers), and corresponding planning 4-dimensional CT (4DCT) scans were analyzed for motion amplitude.</p> <p>Results</p> <p>Integral grey values of phantom TI-EPI portals correlated well with mean object position in all respiratory phases. Cranio-caudal motion of internal structures ranged from 17.5–20.0 mm on planning 4DCT scans. TI-EPI of bronchial images reproduced with a mean value of 5.3 mm (1 SD 3.0 mm) located cranial to planned position. Mean hepatic fiducial markers reproduced with 3.2 mm (SD 2.2 mm) caudal to planned position. After bony alignment to exclude set-up errors, mean displacement in the two structures was 2.8 mm and 1.4 mm, respectively, and corresponding reproducibility in anatomy improved to 1.6 mm (1 SD).</p> <p>Conclusion</p> <p>TI-EPI appears to be a promising method for verifying delivery of RGRT. The RPM system was a good indirect surrogate of internal anatomy, but use of TI-EPI allowed for a direct link between anatomy and breathing patterns.</p
