8 research outputs found

    Blood‐Based Fingerprint of Cardiorespiratory Fitness and Long‐Term Health Outcomes in Young Adulthood

    No full text
    Background Cardiorespiratory fitness is a powerful predictor of health outcomes that is currently underused in primary prevention, especially in young adults. We sought to develop a blood‐based biomarker of cardiorespiratory fitness that is easily translatable across populations. Methods and Results Maximal effort cardiopulmonary exercise testing for quantification of cardiorespiratory fitness (by peak oxygen uptake) and profiling of >200 metabolites at rest were performed in the FHS (Framingham Heart Study; 2016–2019). A metabolomic fitness score was derived/validated in the FHS and was associated with long‐term outcomes in the younger CARDIA (Coronary Artery Risk Development in Young Adults) study. In the FHS (derivation, N=451; validation, N=914; age 54±8 years, 53% women, body mass index 27.7±5.3 kg/m2), we used LASSO (least absolute shrinkage and selection operator) regression to develop a multimetabolite score to predict peak oxygen uptake (correlation with peak oxygen uptake r=0.77 in derivation, 0.61 in validation; both P<0.0001). In a linear model including clinical risk factors, a ≈1‐SD higher metabolomic fitness score had equivalent magnitude of association with peak oxygen uptake as a 9.2‐year age increment. In the CARDIA study (N=2300, median follow‐up 26.9 years, age 32±4 years, 44% women, 44% Black individuals), a 1‐SD higher metabolomic fitness score was associated with a 44% lower risk for mortality (hazard ratio [HR], 0.56 [95% CI, 0.47–0.68]; P<0.0001) and 32% lower risk for cardiovascular disease (HR, 0.68 [95% CI, 0.55–0.84]; P=0.0003) in models adjusted for age, sex, and race, which remained robust with adjustment for clinical risk factors. Conclusions A blood‐based biomarker of cardiorespiratory fitness largely independent of traditional risk factors is associated with long‐term risk of cardiovascular disease and mortality in young adults

    Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β

    No full text
    Mutations in sarcomere protein genes can cause hypertrophic cardiomyopathy (HCM), a disorder characterized by myocyte enlargement, fibrosis, and impaired ventricular relaxation. Here, we demonstrate that sarcomere protein gene mutations activate proliferative and profibrotic signals in non-myocyte cells to produce pathologic remodeling in HCM. Gene expression analyses of non-myocyte cells isolated from HCM mouse hearts showed increased levels of RNAs encoding cell-cycle proteins, Tgf-β, periostin, and other profibrotic proteins. Markedly increased BrdU labeling, Ki67 antigen expression, and periostin immunohistochemistry in the fibrotic regions of HCM hearts confirmed the transcriptional profiling data. Genetic ablation of periostin in HCM mice reduced but did not extinguish non-myocyte proliferation and fibrosis. In contrast, administration of Tgf-β–neutralizing antibodies abrogated non-myocyte proliferation and fibrosis. Chronic administration of the angiotensin II type 1 receptor antagonist losartan to mutation-positive, hypertrophy-negative (prehypertrophic) mice prevented the emergence of hypertrophy, non-myocyte proliferation, and fibrosis. Losartan treatment did not reverse pathologic remodeling of established HCM but did reduce non-myocyte proliferation. These data define non-myocyte activation of Tgf-β signaling as a pivotal mechanism for increased fibrosis in HCM and a potentially important factor contributing to diastolic dysfunction and heart failure. Preemptive pharmacologic inhibition of Tgf-β signals warrants study in human patients with sarcomere gene mutations

    Sex-Specific Associations of Cardiovascular Risk Factors and Biomarkers With Incident Heart Failure

    Get PDF
    Background: Whether cardiovascular (CV) disease risk factors and biomarkers associate differentially with heart failure (HF) risk in men and women is unclear. Objectives: The purpose of this study was to evaluate sex-specific associations of CV risk factors and biomarkers with incident HF. Methods: The analysis was performed using data from 4 community-based cohorts with 12.5 years of follow-up. Participants (recruited between 1989 and 2002) were free of HF at baseline. Biomarker measurements included natriuretic peptides, cardiac troponins, plasminogen activator inhibitor-1, D-dimer, fibrinogen, C-reactive protein, sST2, galectin-3, cystatin-C, and urinary albumin-to-creatinine ratio. Results: Among 22,756 participants (mean age 60 ± 13 years, 53% women), HF occurred in 2,095 participants (47% women). Age, smoking, type 2 diabetes mellitus, hypertension, body mass index, atrial fibrillation, myocardial infarction, left ventricular hypertrophy, and left bundle branch block were strongly associated with HF in both sexes (p < 0.001), and the combined clinical model had good discrimination in men (C-statistic = 0.80) and in women (C-statistic = 0.83). The majority of biomarkers were strongly and similarly associated with HF in both sexes. The clinical model improved modestly after adding natriuretic peptides in men (ΔC-statistic = 0.006; likelihood ratio chi-square = 146; p < 0.001), and after adding cardiac troponins in women (ΔC-statistic = 0.003; likelihood ratio chi-square = 73; p < 0.001). Conclusions: CV risk factors are strongly and similarly associated with incident HF in both sexes, highlighting the similar importance of risk factor control in reducing HF risk in the community. There are subtle sex-related differences in the predictive value of individual biomarkers, but the overall improvement in HF risk estimation when included in a clinical HF risk prediction model is limited in both sexes

    Association of Cardiovascular Biomarkers With Incident Heart Failure With Preserved and Reduced Ejection Fraction

    Get PDF
    Importance: Nearly half of all patients with heart failure have preserved ejection fraction (HFpEF) as opposed to reduced ejection fraction (HFrEF), yet associations of biomarkers with future heart failure subtype are incompletely understood. Objective: To evaluate the associations of 12 cardiovascular biomarkers with incident HFpEF vs HFrEF among adults from the general population. Design, Setting, and Participants: This study included 4 longitudinal community-based cohorts: the Cardiovascular Health Study (1989-1990; 1992-1993 for supplemental African-American cohort), the Framingham Heart Study (1995-1998), the Multi-Ethnic Study of Atherosclerosis (2000-2002), and the Prevention of Renal and Vascular End-stage Disease study (1997-1998). Each cohort had prospective ascertainment of incident HFpEF and HFrEF. Data analysis was performed from June 25, 2015, to November 9, 2017. Exposures: The following biomarkers were examined: N-terminal pro B-type natriuretic peptide or brain natriuretic peptide, high-sensitivity troponin T or I, C-reactive protein (CRP), urinary albumin to creatinine ratio (UACR), renin to aldosterone ratio, D-dimer, fibrinogen, soluble suppressor of tumorigenicity, galectin-3, cystatin C, plasminogen activator inhibitor 1, and interleukin 6. Main Outcomes and Measures: Development of incident HFpEF and incident HFrEF. Results: Among the 22 756 participants in these 4 cohorts (12 087 women and 10 669 men; mean [SD] age, 60 [13] years) in the study, during a median follow-up of 12 years, 633 participants developed incident HFpEF, and 841 developed HFrEF. In models adjusted for clinical risk factors of heart failure, 2 biomarkers were significantly associated with incident HFpEF: UACR (hazard ratio [HR], 1.33; 95% CI, 1.20-1.48; P < .001) and natriuretic peptides (HR, 1.27; 95% CI, 1.16-1.40; P < .001), with suggestive associations for high-sensitivity troponin (HR, 1.11; 95% CI, 1.03-1.19; P = .008), plasminogen activator inhibitor 1 (HR, 1.22; 95% CI, 1.03-1.45; P = .02), and fibrinogen (HR, 1.12; 95% CI, 1.03-1.22; P = .01). By contrast, 6 biomarkers were associated with incident HFrEF: natriuretic peptides (HR, 1.54; 95% CI, 1.41-1.68; P < .001), UACR (HR, 1.21; 95% CI, 1.11-1.32; P < .001), high-sensitivity troponin (HR, 1.37; 95% CI, 1.29-1.46; P < .001), cystatin C (HR, 1.19; 95% CI, 1.11-1.27; P < .001), D-dimer (HR, 1.22; 95% CI, 1.11-1.35; P < .001), and CRP (HR, 1.19; 95% CI, 1.11-1.28; P < .001). When directly compared, natriuretic peptides, high-sensitivity troponin, and CRP were more strongly associated with HFrEF compared with HFpEF. Conclusions and Relevance: Biomarkers of renal dysfunction, endothelial dysfunction, and inflammation were associated with incident HFrEF. By contrast, only natriuretic peptides and UACR were associated with HFpEF. These findings highlight the need for future studies focused on identifying novel biomarkers of the risk of HFpEF

    Predictors and outcomes of heart failure with mid-range ejection fraction

    Get PDF
    Aims: While heart failure with preserved (HFpEF) and reduced ejection fraction (HFrEF) are well described, determinants and outcomes of heart failure with mid-range ejection fraction (HFmrEF) remain unclear. We sought to examine clinical and biochemical predictors of incident HFmrEF in the community. Methods and results: We pooled data from four community-based longitudinal cohorts, with ascertainment of new heart failure (HF) classified into HFmrEF [ejection fraction (EF) 41-49%], HFpEF (EF ≥50%), and HFrEF (EF ≤40%). Predictors of incident HF subtypes were assessed using multivariable Cox models. Among 28 820 participants free of HF followed for a median of 12 years, there were 200 new HFmrEF cases, compared with 811 HFpEF and 1048 HFrEF. Clinical predictors of HFmrEF included age, male sex, systolic blood pressure, diabetes mellitus, and prior myocardial infarction (multivariable adjusted P ≤ 0.003 for all). Biomarkers that predicted HFmrEF included natriuretic peptides, cystatin-C, and high-sensitivity troponin (P ≤ 0.0004 for all). Natriuretic peptides were stronger predictors of HFrEF [hazard ratio (HR) 2.00 per 1 standard deviation increase, 95% confidence interval (CI) 1.81-2.20] than of HFmrEF (HR 1.51, 95% CI 1.20-1.90, P = 0.01 for difference), and did not differ in their association with incident HFmrEF and HFpEF (HR 1.56, 95% CI 1.41-1.73, P = 0.68 for difference). All-cause mortality following the onset of HFmrEF was worse than that of HFpEF (50 vs. 39 events per 1000 person-years, P = 0.02), but comparable to that of HFrEF (46 events per 1000 person-years, P = 0.78). Conclusions: We found overlap in predictors of incident HFmrEF with other HF subtypes. In contrast, mortality risk after HFmrEF was worse than HFpEF, and similar to HFrE
    corecore