6,867 research outputs found
Large Silicon Tracking Systems for ILC: Role, Design and Main issues
The roles, the designs, the main issues and the current status of the R&D on large Silicon Tracking Systems for the ILC are discussed in this paper. The R&D work presented here is performed within the SiLC (Silicon tracking for the Linear Collider) R&D Collaboration
Silicon Data Acquisition and Front-End Electronics
A highly integrated Front-End readout and Data Acquisition scheme for Silicon trackers is presented. In this context, a 16-channel readout chip for Silicon strips detector has been designed in 180nm CMOS technology, having in view a highly multiplexed and sparsified readout global strategy. First results are presented
Front-End and Readout Electronics for Silicon Trackers at the ILC
A highly integrated readout scheme for Silicon trackers making use of Deep Sub-Micron CMOS electronics is presented. In this context,a 16-channel readout chip for Silicon strips detector has been designed in 180nm CMOS technology, each channel comprising a low noise amplifier, a pulse shaper, a sample and hold and a comparator. First results are presented
Extraction of the x-dependence of the non-perturbative QCD b-quark fragmentation distribution component
Using recent measurements of the b-quark fragmentation distribution obtained
in events registered at the Z pole, the non-perturbative
QCD component of the distribution has been extracted independently of any
hadronic physics modelling. This distribution depends only on the way the
perturbative QCD component has been defined. When the perturbative QCD
component is taken from a parton shower Monte-Carlo, the non-perturbative QCD
component is rather similar with those obtained from the Lund or Bowler models.
When the perturbative QCD component is the result of an analytic NLL
computation, the non-perturbative QCD component has to be extended in a
non-physical region and thus cannot be described by any hadronic modelling. In
the two examples used to characterize these two situations, which are studied
at present, it happens that the extracted non-perturbative QCD distribution has
the same shape, being simply translated to higher-x values in the second
approach, illustrating the ability of the analytic perturbative QCD approach to
account for softer gluon radiation than with a parton shower generator.Comment: 13 page
Silicon Avalanche Pixel Sensor for High Precision Tracking
The development of an innovative position sensitive pixelated sensor to
detect and measure with high precision the coordinates of the ionizing
particles is proposed. The silicon avalanche pixel sensors (APiX) is based on
the vertical integration of avalanche pixels connected in pairs and operated in
coincidence in fully digital mode and with the processing electronics embedded
on the chip. The APiX sensor addresses the need to minimize the material budget
and related multiple scattering effects in tracking systems requiring a high
spatial resolution in the presence of a large occupancy. The expected operation
of the new sensor features: low noise, low power consumption and suitable
radiation tolerance. The APiX device provides on-chip digital information on
the position of the coordinate of the impinging charged particle and can be
seen as the building block of a modular system of pixelated arrays,
implementing a sparsified readout. The technological challenges are the 3D
integration of the device under CMOS processes and integration of processing
electronics.Comment: 13th Topical Seminar on Innovative Particle and Radiation Detectors
IPRD1
Searches for Physics Beyond the Standard Model at Colliders
All experimental measurements of particle physics today are beautifully
described by the Standard Model. However, there are good reasons to believe
that new physics may be just around the corner at the TeV energy scale. This
energy range is currently probed by the Tevatron and HERA accelerators and
selected results of searches for physics beyond the Standard Model are
presented here. No signals for new physics have been found and limits are
placed on the allowed parameter space for a variety of different particles.Comment: Proceedings for 2007 Europhysics Conference on High Energy Physics,
Manchester, July 200
Front-end Electronics for Silicon Trackers readout in Deep Sub-Micron CMOS Technology: The case of Silicon strips at the ILC
For the years to come, Silicon strips detectors will be read using the smallest available integrated technologies for room, transparency, and power considerations. CMOS, Bipolar- CMOS and Silicon-Germanium are presently offered in deepsubmicron (250 down to 90nm) at affordable cost through worldwide integrated circuits multiproject centers. As an example, a 180nm CMOS readout prototype chip has been designed and tested, and gave satisfactory results in terms of noise and power. Beam tests are under work, and prospectives in 130nm will be presented
Physics Beyond the Standard Model
I briefly summarize the prospects for extending our understanding of physics
beyond the standard model within the next five years.Comment: 9 pages, 2 figures, LaTeX. Presented at the 1999 UK Phenomenology
Workshop, Durham, September 1999. To be published in Journal of Physics
A CMOS 130nm Evaluation digitzer chip for silicon strips readout
A CMOS 130nm evaluation chip intended to read Silicon strip detectors at the ILC has been designed and successfully tested. Optimized for a detector capacitance of 10 pF, it includes four channels of charge integration, pulse shaping, a 16-deep analogue sampler triggered on input analogue sums, and parallel analogue to digital conversion. Tests results of the full chain are reported, demonstrating the behaviour and performance of the full sampling process and analogue to digital conversion. Each channel dissipates less than one milli-Watt static power
- …