39 research outputs found

    Thioglycosides Are efficient metabolic decoys of glycosylation that reduce selectin dependent leukocyte adhesion

    Get PDF
    Metabolic decoys are synthetic analogs of naturally occurring biosynthetic acceptors. These compounds divert cellular biosynthetic pathways by acting as artificial substrates that usurp the activity of natural enzymes. While O-linked glycosides are common, they are only partially effective even at millimolar concentrations. In contrast, we report that N-acetylglucosamine (GlcNAc) incorporated into various thioglycosides robustly truncate cell surface N- and O-linked glycan biosynthesis at 10-100 μM concentrations. The >10-fold greater inhibition is in part due to the resistance of thioglycosides to hydrolysis by intracellular hexosaminidases. The thioglycosides reduce β-galactose incorporation into lactosamine chains, cell surface sialyl Lewis-X expression, and leukocyte rolling on selectin substrates including inflamed endothelial cells under fluid shear. Treatment of granulocytes with thioglycosides prior to infusion into mouse inhibited neutrophil homing to sites of acute inflammation and bone marrow by ∼80%-90%. Overall, thioglycosides represent an easy to synthesize class of efficient metabolic inhibitors or decoys. They reduce N-/O-linked glycan biosynthesis and inflammatory leukocyte accumulation

    Thioglycosides Are Efficient Metabolic Decoys of Glycosylation that Reduce Selectin Dependent Leukocyte Adhesion

    Get PDF
    © 2018 Elsevier Ltd Small-molecule inhibitors of glycosylation can be applied in basic science studies, and clinical investigations as anti-inflammatory, anti-metastatic, and anti-viral therapies. This article demonstrates that thioglycosides represent a class of potent metabolic decoys that resist hydrolysis, and block E-selectin-dependent leukocyte adhesion in models of inflammation

    Recombinant Sialyltransferase Infusion Mitigates Infection-Driven Acute Lung Inflammation

    Get PDF
    Inappropriate inflammation exacerbates a vast array of chronic and acute conditions with severe health risks. In certain situations, such as acute sepsis, traditional therapies may be inadequate in preventing severe organ damage or death. We have previously shown cell surface glycan modification by the circulating sialyltransferase ST6Gal-1 regulates de novo inflammatory cell production via a novel extrinsic glycosylation pathway. Here, we show that therapeutic administration of recombinant, bioactive ST6Gal-1 (rST6G) mitigates acute inflammation in a murine model mimicking acute exacerbations experienced by patients with chronic obstructive pulmonary disease (COPD). In addition to suppressing proximal neutrophil recruitment at onset of infection-mediated inflammation, rST6G also muted local cytokine production. Histologically, exposure with NTHI, a bacterium associated with COPD exacerbations, in rST6G-treated animals revealed consistent and pronounced reduction of pulmonary inflammation, characterized by smaller inflammatory cuffs around bronchovascular bundles, and fewer inflammatory cells within alveolar walls, alveolar spaces, and on pleural surfaces. Taken together, the data advance the idea that manipulating circulatory ST6Gal-1 levels has potential in managing inflammatory conditions by leveraging the combined approaches of controlling new inflammatory cell production and dampening the inflammation mediator cascade

    A Novel Role for CD55 in Granulocyte Homeostasis and Anti-Bacterial Host Defense

    Get PDF
    Background: In addition to its complement-regulating activity, CD55 is a ligand of the adhesion class G protein-coupled receptor CD97; however, the relevance of this interaction has remained elusive. We previously showed that mice lacking a functional CD97 gene have increased numbers of granulocytes. Methodology/Results: Here,wedemonstratethatCD55-deficientmicedisplay a comparable phenotype with about two-fold more circulating granulocytes in the blood stream, the marginated pool, and the spleen. This granulocytosis was independent of increased complement activity. Augmented numbers of Gr-1-positive cells in cell cycle in the bone marrow indicated a higher granulopoietic activity in mice lacking either CD55 or CD97. Concomitant with the increase in blood granulocyte numbers, Cd55-/mice challenged with the respiratory pathogen Streptococcus pneumoniae developed less bacteremia and died later after infection. Conclusions: Collectively, these data suggest that complement-independent interaction of CD55 with CD97 is functionall

    Evaluation of IL-17 serum level, brain inflammation and demyelination in experimental autoimmune encephalomyelitis C57BL/6 mice model with different doses of myelin oligodendrocyte glycoprotein

    No full text
    Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system.MS creates a wide range of symptoms with lifelong debilitating consequences. The hallmark of the disease is the inflammation of the nervous system, which can lead to damage to the nerve tissue and loss of function of the neurons. IL-17 has a prominent role in the beginning of inflammatory reactions. Here, we analyzed a mouse model developed using anti-myelin antibodies. This mouse model mimics many symptoms of MS in humans. C57BL/6 mice were randomly divided into five groups. Mice were immunized subcutaneously with 50 μg, 100 μg, 150 μg and 200 μg myelin oligodendrocyte glycoprotein in complete Freund's adjuvant containing 4 mg/Ml Mycobacterium tuberculosis and two injections of 800 ng of pertussis toxin intraperitoneally, on day 0 and 2 post immunization. Serum level of IL-17 was measured, inflammation and demyelination of brain tissue were also evaluated. Mice with experimental autoimmune encephalomyelitis demonstrated inflammatory cell accumulation, different degrees of demyelination in the brain, and rising levels of serum IL-17 depending on the dose of the anti-myelin antibody. Our study demonstrates that level of IL-17 production is directly associated with inflammation and demyelination. In addition, different degrees of experimental autoimmune encephalomyelitis in mice can be utilized to test a wide range of therapeutic interventions for MS treatment. Copyright © June 2019, Iran J Allergy Asthma Immunol. All rights reserved

    Altered granulopoietic profile and exaggerated acute neutrophilic inflammation in mice with targeted deficiency in the sialyltransferase ST6Gal I

    No full text
    Elevation of serum sialic acid and the ST6Gal-1 sialyltransferase is part of the hepatic system inflammatory response, but the contribution of ST6Gal-1 has remained unclear. Hepatic ST6Gal-1 elevation is mediated by P1, 1 of 6 promoters regulating the ST6Gal1 gene. We report that the P1-ablated mouse, Siat1ΔP1, and a globally ST6Gal-1–deficient mouse had significantly increased peritoneal leukocytosis after intraperitoneal challenge with thioglycollate. Exaggerated peritonitis was accompanied by only a modest increase in neutrophil viability, and transferred bone marrow–derived neutrophils from Siat1ΔP1 mice migrated to the peritonea of recipients with normal efficiency after thioglycollate challenge. Siat1ΔP1 mice exhibited 3-fold greater neutrophilia by thioglycollate, greater pools of epinephrine-releasable marginated neutrophils, greater sensitivity to G-CSF, elevated bone marrow CFU-G and proliferative-stage myeloid cells, and a more robust recovery from cyclophosphamide-induced myelosuppression. Bone marrow leukocytes from Siat1ΔP1 are indistinguishable from those of wild-type mice in α2,6-sialylation, as revealed by the Sambucus nigra lectin, and in the expression of total ST6Gal-1 mRNA. Together, our study demonstrated a role for ST6Gal-1, possibly from extramedullary sources (eg, produced in liver) in regulating inflammation, circulating neutrophil homeostasis, and replenishing granulocyte numbers
    corecore