2,441 research outputs found
EFFECT OF SOLID DISPERSIONS ON THE SOLUBILITY OF METRONIDAZOLE
The aim of the work is to study the effect of solid dispersions using polyethylene glycols of various molecular weights on the solubility of metronidazole in water. Metronidazole is an antimicrobial and antiprotozoal drug. Its low solubility in water limits the use of metronidazole, causing technological difficulties and reducing its bioavailability. The solubility and release of the active substance from dosage forms can be increased using the solid dispersion methods. Solid dispersions are bi- or multicomponent systems consisting of an active substance and a carrier (a highly dispersed solid phase of the active substance or molecular-dispersed solid solutions) with a partial formation of complexes of variable compositions with the carrier material.Materials and methods. The substance of metronidazole used in the experiment, was manufactured by Hubei Hongyuan Pharmaceutical Technology Co., Ltd. (China). To obtain solid dispersions, polyethylene glycols of various molar masses – 1500, 2000 and 3000 g/mol – were used. The solid dispersions were prepared by "the solvent removal method": metronidazole and the polymer were dissolved in a minimum volume of 96% ethyl alcohol (puriss. p.a./analytical grade) at 65±2°C, and then the solvent was evaporated under vacuum to the constant weight. A vacuum pump and a water bath were used at the temperature of 40±2°C. The dissolution of the samples was studied using a magnetic stirrer with heating, and a thermostatting device. The concentration of metronidazole was determined on a spectrophotometer using quartz cuvettes at the wavelength of 318±2 nm. To filter the solutions, syringe nozzles were used, the pores were 0.45 μm, the filter was nylon. Microcrystalloscopy was performed using a microscope with a digital camera. The optical properties of the solutions were investigated using a quartz cuvette and a mirror camera (the image exposure – 20 sec).Results. Obtaining solid dispersions increases the completeness and rate of the metronidazole dissolution. The solubility of metronidazole from solid dispersions increases by 14–17% in comparison with the original substance. The complex of physical-chemical methods of the analysis, including UV spectrophotometry, microcrystalloscopy and the study of the optical properties of the obtained solutions, makes it possible to suggest the following. The increase in the solubility of metronidazole from solid dispersions is explained by the loss of crystallinity and the formation of a solid solution of the active substance and the solubilizing effect of the polymer with the formation of colloidal solutions of metronidazole at subsequent dissolution of the solid dispersion in water.Conclusion. The preparation of solid dispersions with polyethylene glycols improves the dissolution of metronidazole in water. The results obtained are planned to be used in the development of rapidly dissolving solid dosage forms of metronidazole with an accelerated release and an increased bioavailability
Transverse-target-spin asymmetry in exclusive -meson electroproduction
Hard exclusive electroproduction of mesons is studied with the
HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and
electron beams off a transversely polarized hydrogen target. The amplitudes of
five azimuthal modulations of the single-spin asymmetry of the cross section
with respect to the transverse proton polarization are measured. They are
determined in the entire kinematic region as well as for two bins in photon
virtuality and momentum transfer to the nucleon. Also, a separation of
asymmetry amplitudes into longitudinal and transverse components is done. These
results are compared to a phenomenological model that includes the pion pole
contribution. Within this model, the data favor a positive
transition form factor.Comment: DESY Report 15-14
Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering: Determined by the OLYMPUS Experiment
The OLYMPUS collaboration reports on a precision measurement of the
positron-proton to electron-proton elastic cross section ratio, ,
a direct measure of the contribution of hard two-photon exchange to the elastic
cross section. In the OLYMPUS measurement, 2.01~GeV electron and positron beams
were directed through a hydrogen gas target internal to the DORIS storage ring
at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and
time-of-flight scintillators detected elastically scattered leptons in
coincidence with recoiling protons over a scattering angle range of to . The relative luminosity between the two beam species
was monitored using tracking telescopes of interleaved GEM and MWPC detectors
at , as well as symmetric M{\o}ller/Bhabha calorimeters at
. A total integrated luminosity of 4.5~fb was collected. In
the extraction of , radiative effects were taken into account
using a Monte Carlo generator to simulate the convolutions of internal
bremsstrahlung with experiment-specific conditions such as detector acceptance
and reconstruction efficiency. The resulting values of , presented
here for a wide range of virtual photon polarization ,
are smaller than some hadronic two-photon exchange calculations predict, but
are in reasonable agreement with a subtracted dispersion model and a
phenomenological fit to the form factor data.Comment: 5 pages, 3 figures, 2 table
Longitudinal double-spin asymmetries in semi-inclusive deep-inelastic scattering of electrons and positrons by protons and deuterons
A comprehensive collection of results on longitudinal double-spin asymmetries is presented for charged pions and kaons produced in semi-inclusive deep-inelastic scattering of electrons and positrons on the proton and deuteron, based on the full HERMES data set. The dependence of the asymmetries on hadron transverse momentum and azimuthal angle extends the sensitivity to the flavor structure of the nucleon beyond the distribution functions accessible in the collinear framework. No strong dependence on those variables is observed. In addition, the hadron charge-difference asymmetry is presented, which under certain model assumptions provides access to the helicity distributions of valence quarks
Bose-Einstein correlations in hadron-pairs from lepto-production on nuclei ranging from hydrogen to xenon
Bose-Einstein correlations of like-sign charged hadrons produced in
deep-inelastic electron and positron scattering are studied in the HERMES
experiment using nuclear targets of H, H, He, He, N, Ne, Kr,
and Xe. A Gaussian approach is used to parametrize a two-particle correlation
function determined from events with at least two charged hadrons of the same
sign charge. This correlation function is compared to two different empirical
distributions that do not include the Bose-Einstein correlations. One
distribution is derived from unlike-sign hadron pairs, and the second is
derived from mixing like-sign pairs from different events. The extraction
procedure used simulations incorporating the experimental setup in order to
correct the results for spectrometer acceptance effects, and was tested using
the distribution of unlike-sign hadron pairs. Clear signals of Bose-Einstein
correlations for all target nuclei without a significant variation with the
nuclear target mass are found. Also, no evidence for a dependence on the
invariant mass W of the photon-nucleon system is found when the results are
compared to those of previous experiments
Evidence for Quark-Hadron Duality in the Proton Spin Asymmetry
Spin-dependent lepton-nucleon scattering data have been used to investigate
the validity of the concept of quark-hadron duality for the spin asymmetry
. Longitudinally polarised positrons were scattered off a longitudinally
polarised hydrogen target for values of between 1.2 and 12 GeV and
values of between 1 and 4 GeV. The average double-spin asymmetry in
the nucleon resonance region is found to agree with that measured in
deep-inelastic scattering at the same values of the Bjorken scaling variable
. This finding implies that the description of in terms of quark
degrees of freedom is valid also in the nucleon resonance region for values of
above 1.6 GeV.Comment: 5 pages, 1 eps figure, table added, new references added, in print in
Phys. Rev. Let
Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets
This document is the Technical Design Report covering the two large
spectrometer magnets of the PANDA detector set-up. It shows the conceptual
design of the magnets and their anticipated performance. It precedes the tender
and procurement of the magnets and, hence, is subject to possible modifications
arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti
Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski,
Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy),
Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy
Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target
Single-spin asymmetries for semi-inclusive electroproduction of charged pions
in deep-inelastic scattering of positrons are measured for the first time with
transverse target polarization. The asymmetry depends on the azimuthal angles
of both the pion () and the target spin axis () about the virtual
photon direction and relative to the lepton scattering plane. The extracted
Fourier component \cmpi is a signal of the previously unmeasured quark
transversity distribution, in conjunction with the so-called Collins
fragmentation function, also unknown. The Fourier component \smpi of the
asymmetry arises from a correlation between the transverse polarization of the
target nucleon and the intrinsic transverse momentum of quarks, as represented
by the previously unmeasured Sivers distribution function. Evidence for both
signals is observed, but the Sivers asymmetry may be affected by exclusive
vector meson productio
- …