794 research outputs found
ECC:Economically Congestion Control in Communication Networks
Congestion control is a vital issue in computer networks, especially the Internet. It has always been one of the basic subjects in the field of research. According to the increasing number on the Internet users, its function and services, the traffic of the Internet is highly being increased. By developing in technology however, capacity of data transferring is increasing; but all these developments do not guarantee the utilization of the Internet when it faces traffic overload. For this reason, improvement in congestion control mechanism is a matter that guarantees the utilization of the Internet and lost against network overload. We believe that this issue can be evaluated in accordance with the theories in economy science. The main goal of these theories is to maximize public welfare for people in the society. On the other hand, economy is also the best mathematical tool in order to help recognize hidden dependencies among different network demanding. On this base, we have designed an economical system to give initial services for networkers by early servers. In this system, the width of the band needed for each service proposed as goods. Early servers and their contributors play the role of producers, and all the users are consumers. Proposed algorithm is paved in NS-2 simulated networks and has been compared with XCP and TCP algorithms. The results of this simulation show the success of the proposed way in high utilization and less packet losing
Modélisation dynamique et commande optimale d'un système de réfrigération à base d'éjecteur
Recently, the ejector-based refrigeration system (ERS) has been widely used in the cooling
industry as an appropriate alternative to the compressor-based cooling systems. However,
the advantages of ERS such as the reliable operation and low operation and maintenance
costs are overshadowed by its low efficiency and design complexity. In this context, this
thesis presents the efforts to develop a control model enabling the ERS to operate in its
optimal operational conditions. The extensive experimental studies of ERS revealed that at
a fixed condenser inlet condition, there exists an optimal primary stream mass flow
rate (generating pressure) that simultaneously maximizes the compression ratio (Cr) and
exergy efficiency and minimizes the evaporating pressure. Then, the steady state
models of the heat exchangers were developed and used to investigate the influence of the
increase in generating pressure on the coefficient of performance (COP) of the system and
it showed that increasing the generating pressure reduces the COP, linearly. In order to
predict the choking regime of the ejector and explain the reasons of observed physical
phenomenon, the 1D model of a fixed geometry ejector installed within an R245fa ERS was
developed. The developed model demonstrated that the ejector operates in the subcritical
mode when the generating pressure is below the Cr optimum point, while it operates in
critical mode at or above the optimum generating pressure. Next, a dynamic model of the
ERS was built to evaluate the ERS transient response to an increase in the primary stream
mass flow rate. Since the ERS dynamics is mainly dominated by the thermal dynamics of
the heat exchangers, the dynamic models of the heat exchangers were developed using the
moving boundary approach and connected to the developed models of the ejector and steady
state models of the pump and expansion valve to build a single dynamic model of the system.
The built dynamic model of an ERS was used to estimate the time response of the system in
the absence of accurate experimental data of the system’s dynamics. Finally, a control model
was designed to drive an ERS towards its optimal operation condition. A self-optimizing, model-free control strategy known as Extremum seeking control (ESC) was adopted to
minimize evaporating pressure in a fixed condenser thermal fluid inlet condition. The innovative ESC model named batch phasor ESC (BPESC) was proposed based on estimating the gradient by
evaluating the phasor of the output, in batch time. The simulation results indicated that
the designed BPESC model can seek and find the optimum evaporating pressure with good performance in terms of predicting the steady state optimal values and the convergence rates.Récemment, le système de réfrigération à éjecteur (SRE) a été largement utilisé dans l'industrie du refroidissement en tant que solution de remplacement appropriée aux systèmes de refroidissement à compresseur. Cependant, les avantages du SRE, tels que le fonctionnement fiable et les faibles couts d'exploitation et de maintenance, sont éclipsés par son faible rendement et sa complexité de conception. Dans ce contexte, ce projet de recherche de doctorat a détaillé les efforts déployés pour développer une stratégie de commande permettant au système de fonctionner dans ses conditions opérationnelles optimales. Les études expérimentales approfondies du SRE ont révélé que, dans une condition d'entrée de condensateur constante, il existe un débit massique optimal du flux primaire (générant une pression) qui maximise simultanément le taux de compression
(Cr) et l'efficacité exergétique, et minimise la pression d’évaporation. Ensuite, les modèles à l’état d’équilibre des échangeurs de chaleur ont été développés et utilisés pour étudier l’influence de l’augmentation de la pression générée sur le coefficient de performance (COP) du système et il en ressort que l'augmentation de la pression génératrice réduit le COP de manière linéaire. Afin de prédire le régime d'étouffement de l'éjecteur et d'expliquer les raisons du phénomène physique observé, le modèle 1D d'un éjecteur à géométrie fixe installé dans un système SRE R245fa a été développé. Le modèle développé a démontré que l'éjecteur fonctionne en mode sous-critique lorsque la pression génératrice est inférieure au point optimal de Cr, alors qu'il fonctionne en mode critique à une pression égale ou supérieure à la pression génératrice optimale. Ensuite, un modèle dynamique du SRE a été développé pour étudier la réponse transitoire du SRE lors d’une augmentation du débit massique du flux primaire. Puisque la dynamique du SRE est principalement dominée par la dynamique thermique des échangeurs de chaleur, les modèles dynamiques des échangeurs de chaleur ont été développés à l'aide de l'approche des limites mobiles et connectés aux modèles développés de l'éjecteur et des modèles à l'état stationnaire de la pompe et de la vanne un seul modèle dynamique du système. En l’absence de données expérimentales précises sur la dynamique d’un système SRE, le modèle dynamique développé du SRE a été simulé numériquement pour étudier sa réponse temporelle. Enfin, une stratégie de commande extrêmale (ESC) a été élaboré pour régler automatiquement le SRE à ses conditions de fonctionnement optimales, c’est-à -dire pour trouver la vitesse de la pompe qui minimise la pression dans des conditions d'entrée de condenseur fixes. Afin de proposer une ESC implémentable en temps discret sur une installation réelle sujette à un bruit de mesure important et un traitement hors-ligne par trame, une nouvelle commande extrémale basée sur une approche par phaseur avec une procédure de traitement de signal par trame (BPESC) a été développée et simulée avec le modèle numérique. Les résultats de la simulation ont indiqué que le modèle BPESC peut trouver la vitesse optimale de la pompe avec de bonnes performances en termes de précision et de vitesse de convergence
Low Power AC-DC and DC-DC Multilevel Converters
AC-DC power electronic converters are widely used for electrical power conversion in many industrial applications such as for telecom equipment, information technology equipment, electric vehicles, space power systems and power systems based on renewable energy resources. Conventional AC-DC converters generally have two conversion stages – an AC-DC front-end stage that operates with some sort of power factor correction to ensure good power quality at the input, and a DC-DC conversion stage that takes the DC output of the front-end converter and converts it to the desired output DC voltage. Due to the cost of having two separate and independent converters, there has been considerable research on so-called single-stage converters – converters that can simultaneously perform AC-DC and DC-DC conversion with only a single converter stage. In spite of the research that has been done on AC-DC single-stage, there is still a need for further research to improve their performance.
The main focus of this thesis is on development of new and improved AC-DC single-stage converters that are based on multilevel circuit structures (topologies) and principles instead of conventional two-level ones. The development of a new DC-DC multilevel converter is a secondary focus of this thesis. In this thesis, a literature survey of state of the art AC-DC and DC-DC converters is performed and the drawbacks of previous proposed converters are reviewed. A variety of new power electronic converters including new single-phase and three-phase converters and a new DC-DC converter are then proposed. The steady-state characteristics of each new converter is determined by mathematical analysis, and, once determined, these characteristics are used to develop a procedure for the design of key converter components. The feasibility of all new converters is confirmed by experimental results obtained from proof-of-concept prototype converters. Finally, the contents of the thesis are summarized and conclusions about the effectiveness of using multilevel converter principles to improve the performance of AC-DC and DC-DC converters are made
Improving QC Relaxations of OPF Problems via Voltage Magnitude Difference Constraints and Envelopes for Trilinear Monomials
AC optimal power flow (AC~OPF) is a challenging non-convex optimization
problem that plays a crucial role in power system operation and control.
Recently developed convex relaxation techniques provide new insights regarding
the global optimality of AC~OPF solutions. The quadratic convex (QC) relaxation
is one promising approach that constructs convex envelopes around the
trigonometric and product terms in the polar representation of the power flow
equations. This paper proposes two methods for tightening the QC relaxation.
The first method introduces new variables that represent the voltage magnitude
differences between connected buses. Using "bound tightening" techniques, the
bounds on the voltage magnitude difference variables can be significantly
smaller than the bounds on the voltage magnitudes themselves, so constraints
based on voltage magnitude differences can tighten the relaxation. Second,
rather than a potentially weaker "nested McCormick" formulation, this paper
applies "Meyer and Floudas" envelopes that yield the convex hull of the
trilinear monomials formed by the product of the voltage magnitudes and
trignometric terms in the polar form of the power flow equations. Comparison to
a state-of-the-art QC implementation demonstrates the advantages of these
improvements via smaller optimality gaps.Comment: 8 pages, 1 figur
- …