33 research outputs found

    Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria

    Get PDF
    Malaria remains one of the greatest public health challenges worldwide, particularly in sub-Saharan Africa. The clinical outcome of individuals infected with Plasmodium falciparum parasites depends on many factors including host systemic inflammatory responses, parasite sequestration in tissues and vascular dysfunction. Production of pro-inflammatory cytokines and chemokines promotes endothelial activation as well as recruitment and infiltration of inflammatory cells, which in turn triggers further endothelial cell activation and parasite sequestration. Inflammatory responses are triggered in part by bioactive parasite products such as hemozoin and infected red blood cell-derived extracellular vesicles (iRBC-derived EVs). Here we demonstrate that such EVs contain functional miRNA-Argonaute 2 complexes that are derived from the host RBC. Moreover, we show that EVs are efficiently internalized by endothelial cells, where the miRNA-Argonaute 2 complexes modulate target gene expression and barrier properties. Altogether, these findings provide a mechanistic link between EVs and vascular dysfunction during malaria infection

    G6PD testing in support of treatment and elimination of malaria: recommendations for evaluation of G6PD tests

    Get PDF
    Malaria elimination will be possible only with serious attempts to address asymptomatic infection and chronic infection by both Plasmodium falciparum and Plasmodium vivax. Currently available drugs that can completely clear a human of P. vivax (known as “radical cure”), and that can reduce transmission of malaria parasites, are those in the 8-aminoquinoline drug family, such as primaquine. Unfortunately, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency risk having severe adverse reactions if exposed to these drugs at certain doses. G6PD deficiency is the most common human enzyme defect, affecting approximately 400 million people worldwide. Scaling up radical cure regimens will require testing for G6PD deficiency, at two levels: 1) the individual level to ensure safe case management, and 2) the population level to understand the risk in the local population to guide Plasmodium vivax treatment policy. Several technical and operational knowledge gaps must be addressed to expand access to G6PD deficiency testing and to ensure that a patient’s G6PD status is known before deciding to administer an 8-aminoquinoline-based drug. In this report from a stakeholder meeting held in Thailand on October 4 and 5, 2012, G6PD testing in support of radical cure is discussed in detail. The focus is on challenges to the development and evaluation of G6PD diagnostic tests, and on challenges related to the operational aspects of implementing G6PD testing in support of radical cure. The report also describes recommendations for evaluation of diagnostic tests for G6PD deficiency in support of radical cure

    Circulating microparticles: square the circle

    Get PDF
    Background: The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results: MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions: Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes

    The role of extracellular vesicles in malaria biology and pathogenesis

    Get PDF
    In the past decade, research on the functions of extracellular vesicles in malaria has expanded dramatically. Investigations into the various vesicle types, from both host and parasite origin, has revealed important roles for extracellular vesicles in disease pathogenesis and susceptibility, as well as cell-cell communication and immune responses. Here, work relating to extracellular vesicles in malaria is reviewed, and the areas that remain unknown and require further investigations are highlighted

    Red cell and platelet-derived microparticles are increased in G6PD-deficient subjects.

    No full text
    In response to oxidative stress and during apoptosis, cells often shed microparticles (MPs), submicron elements carrying phosphatidylserine and protein antigens. Glucose-6-phosphate dehydrogenase (G6PD)-deficient cells are extremely sensitive to oxidative damage that may lead to the formation of MPs. To determine whether G6PD deficiency alters membrane phospholipid asymmetry and increases MPs production, we determined the concentrations and cellular origins of MPs in G6PD-deficient individuals using flow cytometry. G6PD-deficient individuals showed an increase in circulating MPs concentrations as compared with G6PD-normal individuals [1051/μL (865-2532/μL) vs. 258/μL (235-575/μL), P < 0.01]. MPs concentrations were significantly increased with the severity of G6PD deficiency. Median MPs concentrations from individuals with severe G6PD deficiency, and individuals with moderate G6PD deficiency were 2567/μL (1216-2532/μL) and 984/μL (685-2107/μL), respectively (P < 0.01). Importantly, G6PD enzymatic activity was significantly correlated with MPs concentrations with r(2) = 0.731. MPs found in G6PD deficiency individuals were largely derived from red blood cells (RBCs) (45%) and platelets (30%). Additionally, Atomic Force Microscopy was used to study the morphology and measures the diameter of MPs found in G6PD-deficient individuals. The mean (SD) width and height of RMPs were 0. 41 (0.18) and 2.04 (0.14) μm, respectively. Together, these results indicate that MP concentration is significantly correlated with G6PD enzymatic activity and is increased in G6PD-deficient as compared with G6PD-normal individuals. Our data also provide an evidence for an alteration in cell membrane associated with a decreased in G6PD activity. However, the significance of MPs in G6PD deficiency needs further clarification

    Affordable Technology for Enumeration of the Absolute CD4 T-Lymphocyte Count by Cell Bead Assay

    No full text
    The quantitative BD Trucount (San Jose, CA) tube method is the conventional but expensive method to quantitate CD4+T-lymphocyte (CD4) counts, and this may be beyond the means of countries with limited resources. In this study, we validated a quantitative method known as a cell-bead (CB) assay to quantitate CD4 counts in the peripheral blood of healthy subjects. The absolute CD4 count obtained from the CB method was highly correlated with those obtained from the Trucount tube (r2=0.98, y=26.73+1.01x, P<0.0001 and a mean bias of 34.8 cell/μL, limit of agreement [LOA] -34.8-104.4 cell/μL) and flow rate-based assay method (r2=0.97; y=69.51 + 0.88x, P<0.0001 and a mean bias -53.5 cell/μL, LOA -149.4-42.3 cell/μL). This study demonstrates that the CB method is suitable and more affordable for CD4 quantitation. This method is inexpensive and interchangeable with the latex bead-based methods for generating absolute counts in resource-limited areas

    Evaluation of the phenotypic test and genetic analysis in the detection of glucose-6-phosphate dehydrogenase deficiency.

    Get PDF
    BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is particularly prevalent in historically malaria-endemic countries. Although most individuals with G6PD deficiency are asymptomatic, deficiency can result in acute haemolytic anaemia after exposure to oxidative agents. A reliable test is necessary for diagnosing the deficiency to prevent an acute haemolytic crisis following, for example, anti-malarial treatment. The aim of this study was to investigate which method was the best predictor of this disorder. METHODS: The present study investigated four G6PD activity detections (fluorescence spot (FS), methaemoglobin reduction (MR), biochemical and cytochemical test). These methods accompanied with mutation analysis of blood samples were taken from 295 apparently healthy individuals with unknown G6PD deficiency status. RESULTS: Molecular characterization of 295 Thai adults revealed an overall prevalence of 14.2%. The G6PD Viangchan (871 G>A) was the most common (83.3%), followed by G6PD Mahidol (487G>A) (11.9%), and G6PD Union (1360 C>T) (4.8%). There were two cases of G6PD deficiency carrying the double mutations of Viangchan (871G > A)-Mahidol (487G > A) and Viangchan (871G > A)-Union (1360C > T). In comparison, the prevalence of G6PD deficiency was 6.1% by FS test and 7.1% by MR test. G6PD activity was 11 ± 2.5 IU/gHb in non-deficient females (mean ± SD), and 10.9 ± 0.6 IU/gHb in non-deficient males. The upper and lower limit cut-off points for partial and severe deficiency in adults were 5.7 IU/gHb (60% of the normal mean) and 0.95 IU/gHb (10% of the normal mean), respectively. All hemizygote, homozygote and double mutations were associated with severe enzyme deficiency (the residual enzyme activity <10% of the normal mean), whereas only 14.3% of the heterozygote mutations showed severe enzyme deficiency. Based on the cut-off value <5.7 IU/gHb, the quantitative G6PD assay diagnosed 83% of cases as G6PD-deficient. Using a cut-off number of negative cell >20% in the cytochemical assay to define G6PD deficiency, the prevalence of G6PD deficiency was closest to the molecular analysis (12.9% G6PD-deficient) compared to the others methods. CONCLUSION: The cytochemical method is a significant predictor of this disease, while FS and MR test are recommended for the detection of severe G6PD deficiency in developing countries

    Increase membrane vesiculation in essential hypertension

    No full text
    Background: A hypertensive condition is known to be an important risk factor for arterial disease and thrombotic events. The detailed understanding of the pathophysiology in thrombotic events is crucial for the development of both preventive measures and the treatment during the early stage. Microparticles are submicron cell membrane vesicle shed from the cell surface in response to cell injury or apoptosis, and they are an essential element in the process leading to the pathogenesis of thrombosis and hemostasis dysfunction in patients. Activation of blood cells can result in the formation of microparticles, which carry a negatively charged, phosphatidylserine (PS), with a diameter of <1.0 micron. The biological and clinical functions of microparticles have been highlighted in coronary artery disease and heart failure. Objective: To elucidate the functional role of microparticles in essential hypertension. Methods: We quantitated the total number of circulating PS+ microparticles and studied the role of PS+ microparticles to see whether they can shorten the plasma recalcification time in patients with essential hypertension. Results: The PS+ microparticles were detectable at a low level in healthy blood and significantly increased in the patients with essential hypertension. With regard to PS+ microparticles affecting prothrombotic state in hypertension, we enriched microparticles and determined their procoagulant activity with a plasma recalcification time. The clotting time was significantly reduced after the addition of enriched microparticles to plasma poor microparticles (PPMP). A significant negative correlation was detected between numbers of enriched-PS+ microparticles and plasma-clotting time (r=-0.43, P=0.01). Conclusion: Taken together, high levels of PS+ microparticles are present in the circulating blood of essential hypertension and may contribute to the generation and perpetuation of a thrombotic state
    corecore