1,230 research outputs found
Low temperature behavior of the heavy Fermion Ce3Co4Sn13
The compound Ce3Co4Sn13 is an extremely heavy cubic heavy fermion system with
a low temperature electronic specific heat of order ~4 J/mol-K2. If the
compound is nonmagnetic, it would be one of the heaviest nonmagnetic Ce-based
heavy fermions reported to date and therefore would be expected to lie
extremely close to a quantum critical point. However, a broad peak of unknown
origin is observed at 0.8 K in the specific heat and magnetic susceptibility,
suggesting the possibility of antiferromagnetic order. We present neutron
diffraction data from polycrystalline samples which do not show any sign of
magnetic scattering below 0.8 K. In addition, we present inelastic neutron
scattering data from a single crystal sample which is consistent with the 1.2 K
energy scale for Kondo spin fluctuations determined from specific heat
measurements.Comment: 4 pages, 2 figures, submitted to J. Mag. Mag. Mater. for ICM 200
First-Order Transition to Incommensurate Phase with Broken Lattice Rotation Symmetry in Frustrated Heisenberg Model
We study a finite-temperature phase transition in the two-dimensional
classical Heisenberg model on a triangular lattice with a ferromagnetic
nearest-neighbor interaction and an antiferromagnetic
third-nearest-neighbor interaction using a Monte Carlo method. Apart from
a trivial degeneracy corresponding to O(3) spin rotations,the ground state for
has a threefold degeneracy corresponding to 120 degree lattice
rotations. We find that this model exhibits a first-order phase transition with
the breaking of the threefold symmetry when the interaction ratio is
.Comment: 4pages,5figure
Raman scattering studies of spin, charge, and lattice dynamics in Ca_{2-x}Sr_{x}RuO_{4} (0 =< x < 0.2)
We use Raman scattering to study spin, charge, and lattice dynamics in
various phases of Ca_{2-x}Sr_{x}RuO_{4}. With increasing substitution of Ca by
Sr in the range 0 =< x < 0.2, we observe (1) evidence for an increase of the
electron-phonon interaction strength, (2) an increased temperature-dependence
of the two-magnon energy and linewidth in the antiferromagnetic insulating
phase, and (3) evidence for charge gap development, and hysteresis associated
with the structural phase change, both of which are indicative of a first-order
metal-insulator transition (T_{MI}) and a coexistence of metallic and
insulating components for T < T_{MI}
Radical-cation salts of BEDT-TTF with lithium tris(oxalato)metallate(III)
The first radical-cation salts in the extensive family (BEDT-TTF)x[(A)M(C2O4)3]·Guest containing lithium as the counter cation have been synthesized and characterised
Modelling the Localized to Itinerant Electronic Transition in the Heavy Fermion System CeIrIn5
We address the fundamental question of crossover from localized to itinerant
state of a paradigmatic heavy fermionmaterial CeIrIn5. The temperature
evolution of the one electron spectra and the optical conductivity is predicted
from first principles calculation. The buildup of coherence in the form of a
dispersive many body feature is followed in detail and its effects on the
conduction electrons and optical conductivity of the material is revealed. We
find multiple hybridization gaps and link them to the crystal structure of the
material. Our theoretical approach explains the multiple peak structures
observed in optical experiments and the sensitivity of CeIrIn5 to substitutions
of the transition metal element and may provide a microscopic basis for the
more phenomenological descriptions currently used to interpret experiments in
heavy fermion systems.Comment: 12 pages, 3 figure
Pressure-Tuned Collapse of the Mott-Like State in Ca_{n+1}Ru_nO_{3n+1} (n=1,2): Raman Spectroscopic Studies
We report a Raman scattering study of the pressure-induced collapse of the
Mott-like phases of Ca_3Ru_2O_7 (T_N=56 K) and Ca_2RuO_4 (T_N=110 K). The
pressure-dependence of the phonon and two-magnon excitations in these materials
indicate: (i) a pressure-induced collapse of the antiferromagnetic (AF)
insulating phase above P* ~ 55 kbar in Ca_3Ru_2O_7 and P* ~ 5-10 kbar in
Ca_2RuO_4, reflecting the importance of Ru-O octahedral distortions in
stabilizing the AF insulating phase; and (ii) evidence for persistent AF
correlations above the critical pressure of Ca_2RuO_4, suggestive of phase
separation involving AF insulator and ferromagnetic metal phases.Comment: 3 figure
Severe Fermi Surface Reconstruction at a Metamagnetic-Transition in CaSrRuO (for )
We report an electrical transport study in CaSrRuO single
crystals at high magnetic fields (). For , the Hall constant
decreases sharply at an anisotropic metamagnetic (MM) transition
reaching its value for SrRuO at high fields. A sharp decrease in the
coefficient of the resistivity -term and a change in the structure of
the angular magnetoresistance oscillations (AMRO) for rotating in the
planes, confirms the reconstruction of the Fermi surface (FS). Our observations
and LDA calculations indicate a strong dependence of the FS on the Ca
concentration and suggest the coexistence of itinerant and localized electronic
states in single layered ruthenates.Comment: 5 pages, 4 fig
- …