55 research outputs found

    Crookesite, Cu7TlSe4, from Littleham Cove, Devon: the first mineral containing essential thallium from the British Isles

    Get PDF
    The rare thallium copper selenide crookesite occurs as dark grey metallic needles in at least two cavities in a nodule collected from cliffs at Littleham Cove, Budleigh Salterton, Devon. This is the first report of a thallium mineral from the British Isles. The small crystal size, confusion in the mineralogical literature and the need to preserve as much of the specimen as possible for future study, made the identification particularly challenging. Thallium minerals have a very limited worldwide distribution. They are almost entirely restricted to unusual low temperature epithermal deposits. The discovery of crookesite in nodules in a Permian red bed environment is, therefore of significant interest. Thallium minerals do not appear to have been reported in this geological setting before.The Russell Society have made this journal freely available to increase the worldwide accessibility and usage of the papers published in the Journal

    The search for Hesperian organic matter on Mars: Pyrolysis studies of sediments rich in sulfur and iron

    Get PDF
    Jarosite on Mars is of significant geological and astrobiological interest as it forms in acidic aqueous conditions that are potentially habitable for acidophilic organisms. Jarosite can provide environmental context and may host organic matter. The most common analytical technique used to search for organic molecules on the surface of Mars is pyrolysis. However, thermal decomposition of jarosite produces oxygen, which degrades organic signals. At pH values greater than 3 and high water to rock ratios jarosite has a close association with goethite. Hematite can form by dehydration of goethite or directly from jarosite under certain aqueous conditions. Goethite and hematite are significantly more amenable for pyrolysis experiments searching for organic matter than jarosite. Analysis of the mineralogy and organic chemistry of samples from a natural acidic stream revealed a diverse response for organic compounds during pyrolysis of goethite-rich layers but a poor response for jarosite-rich or mixed jarosite-goethite units. Goethite units that are associated with jarosite but do not contain jarosite themselves should be targeted for organic detection pyrolysis experiments on Mars. These findings are extremely timely as future exploration targets for Mars Science Laboratory include Hematite Ridge, which may have formed from goethite precursors

    Antarctic meteorites: MIL 07687 and ALHA 77307 - A novel approach of in-situ micro-XRD study of the matrix

    Get PDF
    第6回極域科学シンポジウム[OA] 南極隕石11月16日(月) 国立国語研究所 2階 講

    The α–β phase transition in volcanic cristobalite

    Get PDF
    Cristobalite is a common mineral in volcanic ash produced from dome-forming eruptions. Assessment of the respiratory hazard posed by volcanic ash requires understanding the nature of the cristobalite it contains. Volcanic cristobalite contains coupled substitutions of Al3+ and Na+ for Si4+; similar co-substitutions in synthetic cristobalite are known to modify the crystal structure, affecting the stability of the [alpha] and [beta] forms and the observed transition between them. Here, for the first time, the dynamics and energy changes associated with the [alpha]-[beta] phase transition in volcanic cristobalite are investigated using X-ray powder diffraction with simultaneous in situ heating and differential scanning calorimetry. At ambient temperature, volcanic cristobalite exists in the [alpha] form and has a larger cell volume than synthetic [alpha]-cristobalite; as a result, its diffraction pattern sits between ICDD [alpha]- and [beta]-cristobalite library patterns, which could cause ambiguity in phase identification. On heating from ambient temperature, volcanic cristobalite exhibits a lower degree of thermal expansion than synthetic cristobalite, and it also has a lower [alpha]-[beta] transition temperature (~473 K) compared with synthetic cristobalite (upwards of 543 K); these observations are discussed in relation to the presence of Al3+ and Na+ defects. The transition shows a stable and reproducible hysteresis loop with [alpha] and [beta] phases coexisting through the transition, suggesting that discrete crystals in the sample have different transition temperatures

    Analysis of ferrite formed in 321 grade austenitic stainless steel

    Get PDF
    A significant fraction of ferrite has been identified in a 321 grade austenitic stainless steel in the solution heat treated condition. The microstructures were analysed using electron backscatter diffraction, energy dispersive X-ray spectroscopy and X-ray diffraction (XRD) and the stability of the ferrite investigated using heat treatments in a tube furnace, dilatometry and high temperature XRD. The ferrite dissolved ,800uC, then formed again on cooling at temperatures under 200uC. Thermodynamic predictions showed a significant ferrite content at room temperature under equilibrium conditions, and the DeLong diagrams predict an austenitezmartensite microstructure in the cast condition. Sensitivity analysis on the DeLong diagram has shown that the nitrogen content had a large effect on the austenite stability. The instability of the austenite and the subsequent transformation to ferrite on cooling can be attributed to low nitrogen content measured in the as received material. It was found that thermal aging of the material caused further transformation of austenite to ferrite as well as the formation of sigma phase that appears higher in nitrogen than the matrix phases. The diffusion of nitrogen into sigma phase may cause instability of the austenite, which could cause further transformation of austenite to ferrite on cooling from the aging temperature. The transformation of austenite to ferrite is known to be accompanied by an increase in volume, which may be of relevance to components made with tight dimensional tolerances

    Hydrothermal activity on the CV parent body: New perspectives from the giant Transantarctic Mountains minimeteorite TAM 5.29

    Get PDF
    doi: 10.1111/maps.13429Abstract TAM5.29 is an extraterrestrial dust grain, collected on the Transantarctic Mountains (TAM). Its mineralogy is dominated by an Fe-rich matrix composed of platy fayalitic olivines and clasts of andradite surrounded by diopside-jarosite mantles; chondrules are absent. TAM5.29 records a complex geological history with evidence of extensive thermal metamorphism in the presence of fluids at T < 300 °C. Alteration was terminated by an impact, resulting in shock melt veins and compaction-orientated foliation of olivine. A second episode of alteration at lower temperatures (<100 °C) occurred postimpact and is either parent body or terrestrial in origin and resulted in the formation of iddingsite. The lack of chondrules is explained by random subsampling of the parent body, with TAM5.29 representing a matrix-only fragment. On the basis of bulk chemical composition, mineralogy, and geological history TAM5.29 demonstrates affinities to the CVox group with a mineralogical assemblage in between the Allende-like and Bali-like subgroups (CVoxA and TAM5.29 are rich in andradite, magnetite, and FeNiS, but CVoxA lacks hydrated minerals, common in TAM5.29; conversely, CVoxB are rich in hydrated phyllosilicates but contain almost pure fayalite, not found in TAM5.29). In addition, TAM5.29 has a slightly different metasomatic history, in between the oxidized and reduced CV metamorphic grades while also recording higher oxidizing conditions as compared to the known CV chondrites. This study represents the third CV-like cosmic dust particle, containing a unique composition, mineralogy, and fabric, demonstrating variation in the thermal metamorphic history of the CV parent body(-ies).Copyright © 2020, Nava, J. et al. This document is the authors' final accepted version of the journal article. You are advised to consult the published version if you wish to cite from it

    Experimental study of pH effect on uranium (UVI) particle formation and transport through quartz sand in alkaline 0.1 M sodium chloride solutions

    Get PDF
    A thorough understanding of the aqueous uranium VI (UVI) chemistry in alkaline, sodium containing solutions is imperative to address a wide range of critical challenges in environmental engineering, including nuclear waste management. The aim of the present study was to characterise experimentally in more detail the control of pH on the removal of UVI from aqueous alkaline solutions through particle formation and on subsequent transport through porous media. We conducted first static batch experiments in the pH range between 10.5 and 12.5 containing 10 ppm UVI in 0.1 M NaCl solutions and examined the particles formed using filtration, dynamic light scattering, transition electron microscopy and X-ray powder diffraction. We found that at pH 10.5 and 11.5, between 75 and 96 % of UVI was removed from the solutions as clarkeite and studtite over a period of 48 h, forming particles with hydrodynamic diameters of 640 ± 111 nm and 837 ± 142 nm, respectively and representing aggregates of 10′s nm sized crystals randomly orientated. At pH 12.5, the formation of particles >0.2 μm became insignificant and no UVI was removed from solution. The mobility of UVI in these solutions was further studied using column experiments through quartz sand. We found that at pH 10.5 and 11.5, UVI containing particles were immobilised near the column inlet, likely due physical immobilisation of the particles (particle straining). At pH 12.5, however, UVI quantitatively eluted from the columns in the filter fraction <0.2 μm. The findings of our study reinforce a strong control of solution pH on particle size and U removal in alkaline solutions and subsequently on mobility of U through quartz porous media

    Iron localization in Acarospora colonizing schist on Signy Island

    Get PDF
    A small, inconspicuous lichen, Acarospora cf. badiofusca, was discovered colonizing ironstained quartz mica schists on the lower slope of Manhaul Rock, a recently exposed nunatak on the McLeod Glacier, Signy Island, South Orkney Islands. Thallus colour ranged from rust on exposed rock surfaces to paler orange and green in shaded crevices. This study addressed the hypothesis that colour reflects element localization, and considered substance localization within lichen tissues and responses to stress. Electron microprobe analysis of specimens confirmed that Fe is localized principally in the outer rust-coloured part of the cortex, confirming that the colour reflects Fe localization. Oxalates, widely reported as contributing to tolerance mechanisms to environmental stress, were not detected using X-ray diffraction. The upper thallus surface consisted of sub-micron particulate phases containing Fe, Al and O, suggesting mixed oxide/ hydroxide phases are present and play a role in photoprotection

    Alteration conditions on the CM and CV parent bodies – Insights from hydrothermal experiments with the CO chondrite Kainsaz

    Get PDF
    This study simulates the hydrothermal conditions that existed on carbonaceous chondrite planetesimals in the early solar system. Our experiments are relevant to alteration conditions that existed on the CV parent body and the late stage oxidizing alteration of the CM chondrites. We conducted 11 alteration experiments using chips of the CO3 chondrite Kainsaz. Water was added to each chip and sealed in separate Teflon reaction vessels for 175 days. Samples were altered at different initial water-to-rock ratios (W/R: 0.2–0.8) and temperatures (50 °C and 150 °C). Isotopically doped 17O-rich heavy water (δ17O: +64.5‰) was used in five runs. All samples experienced pronounced alteration under a partially open system environment where gases were able to escape the reaction vessels. The style of alteration (Fe-alkali metasomatism) is similar in all cases. The principal alteration minerals formed are Fe-oxyhydroxides (goethite) and Fe-oxides (magnetite), with smaller quantities of Fe-sulphides. Minor phases formed include fayalite, sulphates (gypsum and Fe-sulphate) and calcite. Nanophase, poorly crystalline phyllosilicates formed in the high-temperature samples but are absent from the low-temperature experiments. In all instances, Mg-rich chondrule silicates remained chemically unaltered although some grains suffered hydrothermal fracture. Chondrule mesostases remained largely unaffected. By contrast, kamacite readily dissolved, acting as a source of Fe and Ni for the fluid phase. A new generation of nanophase Fe-sulphides formed within the matrix, while pre-existing pyrrhotite group sulphides experienced Ni enrichment ( 10 at%) were formed in the 150 °C samples, most likely by sulphidation of taenite. Matrix alteration cemented grains together, reducing porosity. The fine-grained matrix shows highly variable degrees of alteration, with minimally altered matrix in direct contact with regions of heavily altered matrix. Chondrule fine-grained rims (FGRs) were preferentially altered. These textures imply that the unaltered matrix readily reacted with the fluid phase, resulting in an efficient depletion of dissolved ions (Fe2+ and S2-), limiting reactivity until further primary phases were dissolved. At larger length-scales the distribution of heavily altered matrix reveals the presence of large ∼100 µm wide channels that meander through the specimens. Their textures resemble features seen in some CM chondrites and the ungrouped CO-like chondrite MIL 07687. We suggest that alteration fronts developed by sustained rapid reaction of matrix with dissolved cations in solution. Our observations provide a mechanism for the establishment and maintenance of geochemical microenvironments on chondritic asteroids. The effects of open system loss notwithstanding, our experiments demonstrate that more advanced alteration is correlated with higher initial W/R ratios. The use of 17O-rich doped water allowed the isotopic effects of aqueous alteration to be observed. Bulk rock compositions evolved towards the initial water composition, reflecting the incorporation of heavy O into hydrated minerals. Additionally, altered samples shifted in δ18O space, reflecting the competing effects of water–mineral fractionation and mass fractionation due to the preferential escape of isotopically light water
    corecore