138 research outputs found
Electro-optic response in isotropic media
A formal proof has recently been given to show that an electro-optic response of chiral molecules in isotropic media is forbidden by time reversal invariance. A claim to the contrary by Beljonne et al. for the occurrence of such an effect in second order, when dephasing terms are included, is examined critically using a quantum electrodynamics (QED) formulation
Lifetime Measurements in 120Xe
Lifetimes for the lowest three transitions in the nucleus Xe have
been measured using the Recoil Distance Technique. Our data indicate that the
lifetime for the transition is more than a factor of
two lower than the previously adopted value and is in keeping with more recent
measurements performed on this nucleus. The theoretical implications of this
discrepancy and the possible reason for the erroneous earlier results are
discussed. All measured lifetimes in Xe, as well as the systematics of
the lifetimes of the 2 states in Xe isotopes, are compared with
predictions of various models. The available data are best described by the
Fermion Dynamic Symmetry Model (FDSM).Comment: 9 pages, RevTeX, 3 figures with Postscript file available on request
at [email protected], [email protected]. Submitted to Phys.
Rev.
Chiral discrimination in optical trapping and manipulation
When circularly polarized light interacts with chiral molecules or nanoscale particles powerful symmetry principles determine the possibility of achieving chiral discrimination, and the detailed form of electrodynamic mechanisms dictate the types of interaction that can be involved. The optical trapping of molecules and nanoscale particles can be described in terms of a forward-Rayleigh scattering mechanism, with trapping forces being dependent on the positioning within the commonly non-uniform intensity beam profile. In such a scheme, nanoparticles are commonly attracted to local potential energy minima, ordinarily towards the centre of the beam. For achiral particles the pertinent material response property usually entails an electronic polarizability involving transition electric dipole moments. However, in the case of chiral molecules, additional effects arise through the engagement of magnetic counterpart transition dipoles. It emerges that, when circularly polarized light is used for the trapping, a discriminatory response can be identified between left- and right-handed polarizations. Developing a quantum framework to accurately describe this phenomenon, with a tensor formulation to correctly represent the relevant molecular properties, the theory leads to exact analytical expressions for the associated energy landscape contributions. Specific results are identified for liquids and solutions, both for isotropic media and also where partial alignment arises due to a static electric field. The paper concludes with a pragmatic analysis of the scope for achieving enantiomer separation by such methods
A retarded coupling approach to intermolecular interactions
A wide range of physical phenomena such as optical binding and resonance energy transfer involve electronic coupling between adjacent molecules. A quantum electrodynamical description of these intermolecular interactions reveals the presence of retardation effects. The clarity of the procedure associated with the construction of the quantum amplitudes and the precision of the ensuing results for observable energies and rates are widely acknowledged. However, the length and complexity of the derivations involved in such quantum electrodynamical descriptions increase rapidly with the order of the process under study. Whether through the use of time-ordering approaches, or the more expedient state-sequence method, time-consuming calculations cannot usually be bypassed. A simple and succinct method is now presented, which provides for a direct and still entirely rigorous determination of the quantum electrodynamical amplitudes for processes of arbitrarily high order. Using the approach, new results for optical binding in two- and three-particle systems are secured and discussed
Lifetime Measurements in Pt}
Lifetimes in the yrast bands of the nuclei Pt have been measured
using the Doppler-shift Recoil Distance technique. The results in both cases
{\em viz.} a sharp increase in B(E2) values at very low spins, may be
interpreted as resulting from a mixing between two bands of different
quadrupole deformations.Comment: 12 pages; 4 figures; submitted to PR
- …