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Abstract

A formal proof has recently been given to show that an electro-optic response of chiral molecules in
isotropic media is forbidden by time reversal invariance. A claim to the contrary by Beljonne et al. for
the occurrence of such an effect in second order, when dephasing terms are included, is examined critically
using a quantum electrodynamics (QED) formulation.

1 Introduction

Optical processes in which the coherent scattering of light couples linearly with a static electric field are
semiclassically considered to be mediated by a second order (three-wave) nonlinear susceptibilities which, in
the dipole approximation, can only be supported by systems lacking a centre of symmetry.!

In isotropic liquids, this symmetry condition can be satisfied only by chiral or gyrotropic molecules, as is
the case for other even order (odd-wave) interactions such as sum-frequency generation,? and also a newly
conjectured mechanism for second harmonic generation.? In the context of a recent study on the signing of
phenomenological damping* However, it is necessary to entertain other considerations to resolve the issue of
whether a linear electro-optic response (EOR) is fundamentally allowed in such fluids.

Recently Beljonne et al.’ have presented a discussion of the electro-optic response of chiral helicenes in
isotropic media. In detail the process they consider involves forward Rayleigh scattering, between orthogonal
linear polarisations, coupled with an external electric field. Their analysis hinges on the inclusion in their
(semiclassical) susceptibility expression of phenomenological damping factors, meant to represent lifetime
broadening and dephasing effects. The authors conclude that chiral molecules in isotropic media possess a
significant electro-optic response (at the electric dipole level). This conclusion is in strong contrast to that of
Andrews et al.* who find that electro-optic response is forbidden in fluid media. In this paper we discuss why
this difference in conclusion exists, and we give an alternative formulation whose results support the results
of Andrews et al.

Beljonne et al.’® stress the basis of their inclusion of homogeneous damping as a two-particle effect. This
two-particle origin has no bearing on the correctness or otherwise of their conclusions when all damping
mechanisms are assimilated in one phenomenological parameter. Even had this not been so, each many-body
effect must respect time-reversal invariance when the basic Hamiltonian is time-even (i.e. does not explicitly
include CP violation effects). As Andrews et al. indicate, the mere presence of a two-particle effect cannot
exonerate such an analysis from the demands of time reversal symmetry. Dephasing effects in particular are
not exempt, although they certainly lead to destructive interference between the one-particle decay amplitudes
contributing to observed linewidths.%%

2 QED-theoretic description of EOR

2.1 Tensors

In the multipolar formulation of quantum electrodynamics, interactions which are classically termed static
(longitudinal or instantaneous) are cast in terms of a coupling mediated by the radiation field (transverse
photons). In the description which follows we calculate the quantum mechanical measurable corresponding
to registration of the static field by a probe. In the present context, this entails the concatenation of what
might classically be regarded as the ‘production’ of the static field by a molecule A and the ‘detection’ of that
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field as registered by a probe molecule at a site D. The probe molecule is a simplified model of a detector; if
a more general and complex case is considered, the detector should be modelled as a microscopic ensemble
fixed in space.

The molecules interact with the electromagnetic field by absorbing a photon of mode ( k1, A1 ) and emitting
a photon of mode ( k2, Az ). To consider the most general case, obviating any unnecessary assumptions, these
two interactions can take place either in molecule A, positioned at R 4 and free to rotate, or at the probe
molecule, fixed at R — though to admit the latter is a potentially complicating feature with little practical
significance. However, the fact that the probe molecule is fixed in its site restricts the final results. In what
follows, the general case is considered and then, the restriction is appropriately addressed.

The complete radiation-molecular system, including the detector, can first be described by the following
Hamiltonian:

H=> Hg+ Hf + Hraa + Hiy (2.1)
A

where H()4 and HE are the molecular Hamiltonians, H,.4 is the electromagnetic Hamiltonian in free space and

H,_, is the interaction term for the coupling between the molecules and the field. In the multipolar formalism,

and within the electric-dipole (E1) approximation, the interaction Hamiltonian is represented by
1 1
Hy= — =Y u(4) - d(4) — —p(D) - d* (D). (2.2)
o A o

The electro-optic effect can be described in terms of the matrix element for the pair AD, M J’f‘iD , for which
the first non-zero contribution is

Z {<innt |I1I) (I11| Hing |11) (11| Hing |I) (I| Hin Z)}
Errri Erri Ers

MAD — (2.3)

I,1II,III

To evaluate this matrix element it is necessary to establish the initial and final states of the system, which
are cast in terms of the solutions to the Schrédinger equation when no interaction is present:

i) = TTIES) x| B8) x Inllah), o' (ke de))
A

1) = TLIES) < |ER) < [(n=1) (1, A1), (0 +1) (ka, Ao)) (2.4)
A

With the initial and final states of the system properly defined the matrix element can be written as the
following integration over p (a wave-vector for the virtual coupling of each AD pair), following similar steps
to those of Craig and Thirunamachandran”:

—ip-R) exp(ip-R)

MAP = A, /d V5 + vy |2 R) 2.5
i kl P{p( w+ ViVi) K—p it p + (2.5)

—Byy /dp { (—V26kl + Vi Vi) [exp(—ip-R) —exp (ip- R)]} + (A < D)

where the tensors Ay; and By, are:
he  ky/n(n' +1) . A A2 00 00
Ap = (2e,)? (27r)3V exp i (k; - Ra — k2 - Rp)] €; €5 Qg (D) o (A), (2.6)
A ky/m(n/ +1 . Y

By = c ( ) exp[i (k1 — ko) - R4] e?le;z 5?21‘ (A) #?0 (D). (2.7)

(26:)2  (2n)*V

Because of the phase factor in equation (2.6), the first term of the matrix element will give a null contri-
bution when an ensemble is considered, and therefore this term can be dropped from here onwards. Using
the Cauchy Principal Value theorem we obtain the following expression for the matrix element:

MyP = <27ch;/> Vn (0 +1) e e [B9 (A) 1® (D) exp(iAk-Ra) + (D A)] Vi (O,R),  (2.8)



where Vi (0, R) is the instantaneous electrostatic interaction potential

1 L
Vi (0, R) = P <5kl - 3Rle) : (2.9)

From expression (2.8) it can be seen that the second term vanishes when the rotational average over the
species A is calculated. It is also important to notice that the expression found for the matrix element A J‘}ZD
is for the case where k; and k» satisfy the energy conservation condition; to satisfy wave-vector matching we
have that k; = ko = k. In summary the matrix element for this process can be written as:

fick )
MEP = < 5 V) V(' +1) et éj.zg‘;gi (A) Vi (0, R) % (D). (2.10)

In this simple expression the inferred static field at Ry is easily identified with the factor

(= 3 VAT e e (A) Vi (0. R) = EQO.B) (@), (211)
where E is the static field at Ry and (&), is a component of the unit vector. In passing, it is important to
note that the direction of the static field is determined by the instantaneous electrostatic interaction potential.

Equation (2.10) has been written in terms of a third-rank hyperpolarisability tensor, . This tensor can be
expressed as follows in terms of the dipole moments g and differences between the energy of the initial and
intermediate states:

Bad) = 3 95 g N (2 g p® . e s py°
Ikt | (Byo =) (Bpg — hw) — (Egg + ) (Bg +hw)  (Ey) (Byp — hw)
. [ 3T 192 " 10 N [10% " 0 2.12)
(Ey) (B, g +Tw)  (Ey—hw)(Eg)  (Ey+hw)(E,) @) ’

where on the left the superscript 00 indicating the final and initial molecular states has been dropped for
brevity.

To take into full account the resonant or near-resonant case, it is necessary to introduce at this stage
damping factors I's associated with the molecular excited state |s) , through their lifetime, 2AI';! . There
are two different schools of thought on the signing of the damping factor. If the damping factor is introduced
using the constant sign convention, csc for short (ref.* and references therein), the hyperpolarisability tensor
is written as:

Qs ,,sr,,70 0s,,sr,,r0
My s ]
e (A) = J J
B (A) Z { (Eyy —ils — hw) (E,q — il — hw) * (Eyy —ils + hw) (E,o — il + hw) *
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+
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On the other hand, if the variable sign convention (vsc) (ref.* and references therein) is used the suscep-
tibility tensor takes the form:

0s,,s7r,,70 0s,,sr,,r0
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By application of HT symmetry (the combination of the time reversal operation with hermitian conjugation)*
to the first, second, fifth and sixth terms of equation (2.13) it can be seen that 377 (~w; w, 0) is symmetric
under the interchange j < i :



0s,,sr,,r0
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On the contrary, when the HT operation is applied to equivalent terms in equation (2.14) 877 (—w; w, 0)
does not present the same type of symmetry:
g = 3 3 (K97 1° + 1 i 1) 3 (1 15 + i i)
ki 2\ (B —1Ts — 1) (Byg — 10y — hw) | (Byg +1Ts + o) (Byg + Ty + o)
N s g N b N
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N s 0 N B iy (2.16)
(B 1), (Byo +1T, T 7w) | (B 1) (Eyp + 1Ty + i) |

2.2 Rotational Average

Through the electro-optic interaction, if allowed, the system suffers an energy shift, due to the interaction

Hamiltonian H; ,. This shift is associated, in first approximation, with the matrix element A j}iD, equation

(2.10), through:

N
AE =M;P* =" MpP (2.17)
A=1

Since all N AD pair matrix elements are equivalent to each other the rotational average of the energy shift is
simply:

(AE) = N (M3P)

hck Y
= (o) N VAT e (A D W) Vi, 0 R) 219

In this expression we have denoted the sub-indices of the tensors with the subscript L to emphasise the fact
that they refer to a space-frame fixed in the laboratory. The rotational average < 5%(; ron, D) p® (A) Vi, 1, (0, R)>

in general involves three different frame-decoupling rotational averages.® However in the case under scrutiny,
the probe molecule D representing the detector is fixed, and consequently only one rotational average is
necessary. To do so it is necessary to consider a frame fixed on molecule A:

i3 (D) (Br, 1,z (A) Vi, (0, R)) = u (D) 1% By 4, 4, (A) Viuz, (0, R),

where 1) = %e L;LyL;€A; A4, - Therefore, the ensemble value of the energy shift can be written as:

hck .
AE) ~ (g ) N VAT ex,aniel @b, (D) eanin B an, (A) Vi O.R), (219)
or simply
hek ’ A1 sA2) 73
(AE) ~ PG N y/n(n/ +1) [(eM x &%), B Vie (0, R)] 1 (D). (2.20)

where the subscripts A and L have been dropped for simplicity. Equation (2.20) has been written in terms of
(3, the anti-symmetric part of the tensor (3, which can also be expressed as:



_ 1 1
ﬁ = 5 (/Bmyz - ﬁzy:r) + 5 (ﬁyzm - ﬁ:}czy) + 5 (ﬁz:}cy - ﬁymz)

1
- > 5 (Bini = Birg) - (2.21)
{i:k,iy={=y,2}
cyelic
CSC
_ igk
in equation (2.15), it can easily be seen that the anti-symmetric part 8 is null, and the electro-optic signal
disappears. On the other hand, the signal survives if the hyperpolarisability tensor ,Bff,f is constructed using

the variable sign convention, since the anti-symmetric part is then non-zero and equal to:

With a hyperpolarisability tensor correctly constructed by reference to the constant sign convention, 3

il (hw + 1) 0 0 0 0
pgre= Yy {Z 2 T2 p — (" — T ) ¢ (2.22)
tbii=(oaney Uo7 Boo T 15 (Fro)” = (B +T)
cyclic
In this case the effect would be of order I';/E;p times the amplitude. Hence, within the constant sign
convention the process is forbidden in the electric-dipole approximation, whereas it would not be under the
variable sign convention. This result should in principle be amenable to experimental verification.

3 Multipole considerations

To conclude matters it is necessary to account for the fact that, in the constant sign convention, the process
is allowed at multipole couplings beyond the electric dipole approximation. It is therefore of some interest
to estimate whether it is possible to attribute any residual observed electro-optic response in fluids to the
breakdown of electric-dipole coupling, rather than take such an observation as a vindication of the use of
a variable sign convention within E1. Would the latter mechanism, which we consider to be inapplicable,
conceivably masquerade in inducing the effects of the former? Either, of course, could be wrongly attributed
if an experiment were to give a false affirmative.

To address this question, let us compare the magnitudes of such El-violating terms with a conjectured
response based on equation (2.22). We denote the direction of the static electric field by e and denote the
polarisations of the incoming and outgoing photons by e; and es respectively (both with wave-vector k). In
the electric dipole approximation the rotational average? results in these three vectors contracting to give the
scalar (es X e1) - €, as in equation (2.20), and e, must therefore have a projection along k. At the magnetic
dipole and electric quadrupole level, i.e. at the level that is linear in k, the rotational average results in the
three scalars

(ea-e1)(es k), (ea-es)(er-k), (e1-e5)(ex-k), (3.1)

all three of which are necessarily zero. For the parts of the amplitude that are quadratic in & the rotational
average results in scalars such as (e X e1) - e; (k- k) , which are non-zero for any choice of polarisations.
This verifies that the process is possible at higher orders than E1 coupling in the fixed sign prescription; in
particular at the electric octopole/magnetic quadrupole level. A comparison of equation (2.15) with equation
(2.22), where in the former the electric dipole interaction terms have been replaced by such higher order
multipole interactions (and therefore reduced by approximately by a factor of o where « is the fine structure
constant) shows that the ratio of the amplitudes in the two conventions may be approximated as

A'u.sc - Fr
Acsc QQEOT

In Beljonne et al.® the frequency-dependent material damping rates are defined as I',o = Cw,o where
C' is an empirical constant set to 0.016 (for condensed matter sub-systems). Then for w,g ~ 2—5 eV |
the homogeneous damping, 5 T, , is at least of order 10'3 s =1 . Given that the transition energy® is of
the order h 1E,q ~ 10'® s =1 | the ratio in equation (3.2) is approximately 102 . Our analysis, along with
that of Andrews et al.* thus gives evidence that a relatively large EOR signal, predicted by the variable sign
prescription, is spurious, and that any observed EOR in isotropic systems can arise (in accordance with the
theory based on the fixed sign prescription) only from the relatively small contribution of multipoles beyond
E1l.

(3.2)
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