26 research outputs found

    Localized endomorphisms in Kitaev's toric code on the plane

    Get PDF
    We consider various aspects of Kitaev's toric code model on a plane in the C^*-algebraic approach to quantum spin systems on a lattice. In particular, we show that elementary excitations of the ground state can be described by localized endomorphisms of the observable algebra. The structure of these endomorphisms is analyzed in the spirit of the Doplicher-Haag-Roberts program (specifically, through its generalization to infinite regions as considered by Buchholz and Fredenhagen). Most notably, the statistics of excitations can be calculated in this way. The excitations can equivalently be described by the representation theory of D(Z_2), i.e., Drinfel'd's quantum double of the group algebra of Z_2.Comment: 26 pages, 5 figures. v2: proof of Prop. 2.2 fixed, other minor correction

    Kitaev's quantum double model from a local quantum physics point of view

    Full text link
    A prominent example of a topologically ordered system is Kitaev's quantum double model D(G)\mathcal{D}(G) for finite groups GG (which in particular includes G=Z2G = \mathbb{Z}_2, the toric code). We will look at these models from the point of view of local quantum physics. In particular, we will review how in the abelian case, one can do a Doplicher-Haag-Roberts analysis to study the different superselection sectors of the model. In this way one finds that the charges are in one-to-one correspondence with the representations of D(G)\mathcal{D}(G), and that they are in fact anyons. Interchanging two of such anyons gives a non-trivial phase, not just a possible sign change. The case of non-abelian groups GG is more complicated. We outline how one could use amplimorphisms, that is, morphisms A→Mn(A)A \to M_n(A) to study the superselection structure in that case. Finally, we give a brief overview of applications of topologically ordered systems to the field of quantum computation.Comment: Chapter contributed to R. Brunetti, C. Dappiaggi, K. Fredenhagen, J. Yngvason (eds), Advances in Algebraic Quantum Field Theory (Springer 2015). Mainly revie

    On the extension of stringlike localised sectors in 2+1 dimensions

    Get PDF
    In the framework of algebraic quantum field theory, we study the category \Delta_BF^A of stringlike localised representations of a net of observables O \mapsto A(O) in three dimensions. It is shown that compactly localised (DHR) representations give rise to a non-trivial centre of \Delta_BF^A with respect to the braiding. This implies that \Delta_BF^A cannot be modular when non-trival DHR sectors exist. Modular tensor categories, however, are important for topological quantum computing. For this reason, we discuss a method to remove this obstruction to modularity. Indeed, the obstruction can be removed by passing from the observable net A(O) to the Doplicher-Roberts field net F(O). It is then shown that sectors of A can be extended to sectors of the field net that commute with the action of the corresponding symmetry group. Moreover, all such sectors are extensions of sectors of A. Finally, the category \Delta_BF^F of sectors of F is studied by investigating the relation with the categorical crossed product of \Delta_BF^A by the subcategory of DHR representations. Under appropriate conditions, this completely determines the category \Delta_BF^F.Comment: 36 pages, 1 eps figure; v2: appendix added, minor corrections and clarification

    Notions of Infinity in Quantum Physics

    Full text link
    In this article we will review some notions of infiniteness that appear in Hilbert space operators and operator algebras. These include proper infiniteness, Murray von Neumann's classification into type I and type III factors and the class of F{/o} lner C*-algebras that capture some aspects of amenability. We will also mention how these notions reappear in the description of certain mathematical aspects of quantum mechanics, quantum field theory and the theory of superselection sectors. We also show that the algebra of the canonical anti-commutation relations (CAR-algebra) is in the class of F{/o} lner C*-algebras.Comment: 11 page

    Inspecteur zou weer kritische observator moeten zijn

    Get PDF
    Met het systeem van risicoanalyse heeft de Onderwijsinspectie zich op te grote afstand gezet van de scholen. Dat zou op termijn wel eens verkeerd uit kunnen pakken, vreest Melanie Ehren, die in 2006 promoveerde op het onderwerp ‘Toezicht en schoolverbetering’. Zij pleit voor het herstel van de inspecteur 'als een kritische observator van de scholen'

    Palimpsest over vertaalkritiek en verleiding

    No full text
    corecore