123 research outputs found

    Sublethal exposure to copper supresses the ability to acclimate to hypoxia in a model fish species

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordHypoxia is one of the major threats to biodiversity in aquatic systems. The association of hypoxia with nutrient-rich effluent input into aquatic systems results in scenarios where hypoxic waters could be contaminated with a wide range of chemicals, including metals. Despite this, little is known about the ability of fish to respond to hypoxia when exposures occur in the presence of environmental toxicants. We address this knowledge gap by investigating the effects of exposures to different levels of oxygen in the presence or absence of copper using the three-spined sticklebacks (Gasterosteus aculeatus) model. Fish were exposed to different air saturations (AS; 100%, 75% and 50%) in combination with copper (20 μg/L) over a 4 day period. The critical oxygen level (Pcrit), an indicator of acute hypoxia tolerance, was 54.64 ± 2.51% AS under control conditions, and 36.21 ± 2.14% when fish were chronically exposed to hypoxia (50% AS) for 4 days, revealing the ability of fish to acclimate to low oxygen conditions. Importantly, the additional exposure to copper (20 μg/L) prevented this improvement in Pcrit, impairing hypoxia acclimation. In addition, an increase in ventilation rate was observed for combined copper and hypoxia exposure, compared to the single stressors or the controls. Interestingly, in the groups exposed to copper, a large increase in variation in the measured Pcrit was observed between individuals, both under normoxic and hypoxic conditions. This variation, if observed in wild populations, may lead to selection for a tolerant phenotype and alterations in the gene pool of the populations, with consequences for their sustainability. Our findings provide strong evidence that copper reduces the capacity of fish to respond to hypoxia by preventing acclimation and will inform predictions of the consequences of global increases of hypoxia in water systems affected by other pollutants worldwide.University of ExeterCentre for Environment Fisheries and Aquaculture Science (Cefas)Biotechnology and Biological Sciences Research Council (BBSRC)ONICYT-FONDECY

    Multicompartment and cross-species monitoring of contaminants of emerging concern in an estuarine habitat

    Get PDF
    Supplementary data to this article can be found online athttps://doi.org/10.1016/j.envpol.2020.116300.Biotechnologyand Biological Sciences Research Council (BBSRC) iNVERTOX proj-ect (Reference BB/P005187/1); Universityof Essex

    Glucocorticoid receptor (DlGR1) is expressed in pre-larval and larval stages of the teleost fish Dicentrarchus labrax

    Get PDF
    Glucocorticoid hormone receptors (GR), members of the nuclear hormone receptor superfamily, are ligand-dependent transcription factors expressed in various tissues by binding to specific DNA sequences. Since glucocorticoids have a role in maintaining the homeostatic status in fish, we previously cloned and sequenced a GR (DlGR1) of adult Dicentrarchus labrax; we also showed mRNA expression (in situ hybridization) and tissue immunohistochemical localization of DlGR1 in several organs. This work has now been extended to the examination of the expression, tissue distribution, and cytolocalization of DlGR1 in larval developmental stages by similar methods to those used for the adult organs. The riboprobe included the DlGR1 cDNA transcriptional activation domain (1.0–1,300 nucleotide sequence) showing no significant similarity with a known second GR cDNA sequence of sea bass. The antibody was specific for an opportunely selected peptide sequence of the DlGR1 transcriptional domain. In histological sections of brain, head kidney, gills, liver, anterior intestine, and spleen cells, the riboprobe was mainly located in the cell nucleus. The antibody identified DlGR1 in the head kidney, gills, liver, and anterior intestine, mainly located in the cytosol. These results are in agreement with the receptor location in adult tissues. The greater presence of both the transcript and protein of DlGR1 in the late developmental stages suggests an increasing expression of this receptor. The cytolocalization (nuclear-cytosolic) and presumptive roles of DlGR1-containing tissues are discussed

    Acquisition of Ca2+ and HCO3−/CO32− for shell formation in embryos of the common pond snail Lymnaea stagnalis

    Get PDF
    Embryos of the freshwater common pond snail Lymnaea stagnalis develop to hatch within 10 days under control conditions (22°C, Miami-Dade tap water) and this development is impaired by removal of ambient calcium. In contrast, embryos did not exhibit dependence upon an ambient HCO3−/CO32− source, developing and hatching in HCO3−/CO32−-free water at rates comparable to controls. Post-metamorphic, shell-laying embryos exhibited a significant saturation-type calcium uptake as a function of increasing ambient calcium concentration. However, changes in ambient bicarbonate concentration did not influence calcium or apparent titratable alkalinity uptake. There was a distinct shift from no significant flux in pre-metamorphic embryos to net uptake of calcium in post-metamorphic stages as indicated by an increased uptake from the micro-environment surrounding the egg mass and increased net uptake in 24-h, whole egg mass flux measurements. Furthermore, HCO3−/CO32− acquisition as measured by titratable alkalinity flux is at least partially attributable to an endogenous carbonate source that is associated with acid extrusion. Thus, calcium requirements for embryonic shell formation are met via uptake but HCO3−/CO32−, which is also necessary for shell formation is acquired in part from endogenous sources with no detectable correlation to ambient HCO3−/CO32− availability

    Evolution of ligand specificity in vertebrate corticosteroid receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Corticosteroid receptors include mineralocorticoid (MR) and glucocorticoid (GR) receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear.</p> <p>Results</p> <p>We used up to seven steroids (including aldosterone, cortisol and 11-deoxycorticosterone [DOC]) to compare the ligand specificity of the ligand binding domains of corticosteroid receptors between a mammal (<it>Mus musculus</it>) and the midshipman fish (<it>Porichthys notatus</it>), a teleost model for steroid regulation of neural and behavioral plasticity. Variation in mineralocorticoid sensitivity was considered in a broader phylogenetic context by examining the aldosterone sensitivity of MR and GRs from the distantly related daffodil cichlid (<it>Neolamprologus pulcher</it>), another teleost model for neurobehavioral plasticity. Both teleost species had a single MR and duplicate GRs. All MRs were sensitive to DOC, consistent with the hypothesis that DOC was the initial ligand of the ancestral MR. Variation in GR steroid-specificity corresponds to nine identified amino acid residue substitutions rather than phylogenetic relationships based on receptor sequences.</p> <p>Conclusion</p> <p>The mineralocorticoid sensitivity of duplicate GRs in teleosts is highly labile in the context of their evolutionary phylogeny, a property that likely led to neo-functionalization and maintenance of two GRs.</p

    Reverse Effect of Mammalian Hypocalcemic Cortisol in Fish: Cortisol Stimulates Ca2+ Uptake via Glucocorticoid Receptor-Mediated Vitamin D3 Metabolism

    Get PDF
    Cortisol was reported to downregulate body-fluid Ca2+ levels in mammals but was proposed to show hypercalcemic effects in teleostean fish. Fish, unlike terrestrial vertebrates, obtain Ca2+ from the environment mainly via the gills and skin rather than by dietary means, and have to regulate the Ca2+ uptake functions to cope with fluctuating Ca2+ levels in aquatic environments. Cortisol was previously found to regulate Ca2+ uptake in fish; however, the molecular mechanism behind this is largely unclear. Zebrafish were used as a model to explore this issue. Acclimation to low-Ca2+ fresh water stimulated Ca2+ influx and expression of epithelial calcium channel (ecac), 11β-hydroxylase and the glucocorticoid receptor (gr). Exogenous cortisol increased Ca2+ influx and the expressions of ecac and hydroxysteroid 11-beta dehydrogenase 2 (hsd11b2), but downregulated 11β-hydroxylase and the gr with no effects on other Ca2+ transporters or the mineralocorticoid receptor (mr). Morpholino knockdown of the GR, but not the MR, was found to impair zebrafish Ca2+ uptake function by inhibiting the ecac expression. To further explore the regulatory mechanism of cortisol in Ca2+ uptake, the involvement of vitamin D3 was analyzed. Cortisol stimulated expressions of vitamin D-25hydroxylase (cyp27a1), cyp27a1 like (cyp27a1l), 1α-OHase (cyp27b1) at 3 dpf through GR, the first time to demonstrate the relationship between cortisol and vitamin D3 in fish. In conclusion, cortisol stimulates ecac expression to enhance Ca2+ uptake functions, and this control pathway is suggested to be mediated by the GR. Lastly, cortisol also could mediate vitamin D3 signaling to stimulate Ca2+ uptake in zebrafish

    Regional mitochondrial DNA and cell-type changes in post-mortem brains of non-diabetic Alzheimer’s disease are not present in diabetic Alzheimer’s disease

    Get PDF
    Background: Mitochondrial dysfunction is implicated in both diabetes and Alzheimer’s disease (AD), and diabetes also increases the risk of AD, however the combined impact of AD and diabetes on brain mitochondria is unknown. The purpose of this study was to test the hypothesis that the combination of both diabetes and AD exacerbates mitochondrial dysfunction. Methods: Post-mortem human brains (n=74), were used to determine mitochondrial DNA (mtDNA) content of cerebellum, frontal cortex and parietal cortex by quantifying absolute mtDNA copy number/cell using real time qPCR. mtDNA content was compared between diabetic and non-diabetic cases representing non-cognitively impaired controls (NCI), mildly cognitively impaired (MCI) and AD. A subset of parietal cortex samples was used to quantify mRNAs corresponding to cell types and mitochondrial function. Immune-staining of parietal cortex sections followed by semi-automated stereological assessment was performed to assess cell types. Results. Using mtDNA as an indicator of mitochondrial content, we observed significant regional variation, being highest in the parietal cortex, and lowest in the cerebellum. In the absence of diabetes, AD cases had decreased parietal cortex mtDNA, reduced MAP2 (neuronal) mRNA and increased GFAP (astrocyte) mRNA, relative to NCI. However, in the presence of both diabetes and AD, we did not observe these changes in the parietal cortex. Irrespective of cognitive status, all 3 brain regions in diabetic cases had significantly higher mtDNA than the non-diabetic cases. Conclusion. Our data show that the parietal cortex has the highest mitochondrial content but is also the most vulnerable to changes in AD, as shown by reduced mtDNA and neurones in this region. In contrast, when patients have both diabetes and AD, the AD associated parietal cortex changes are no longer seen, suggesting that the pathology observed in diabetic AD may be different to that seen in non-diabetic AD. The lack of clear functional changes in mitochondrial parameters in diabetic AD suggest that there may be different mechanisms contributing to cognitive impairment in diabetes and their impact on the respective disease neuro-pathologies remain to be fully understood

    Metal Bioavailability in the Sava River Water

    Get PDF
    Metals present one of the major contamination problems for freshwater systems, such as the Sava River, due to their high toxicity, persistence, and tendency to accumulate in sediment and living organisms. The comprehensive assessment of the metal bioavailability in the Sava River encompassed the analyses of dissolved and DGT-labile metal species of nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the river water, as well as the evaluation of the accumulation of five metals (Cd, Cu, Fe, Mn, and Zn) in three organs (liver, gills, and gastrointestinal tissue) of the bioindicator organism, fish species European chub (Squalius cephalus L.).This survey was conducted mainly during the year 2006, in two sampling campaigns, in April/May and September, as periods representative for chub spawning and post-spawning. Additionally, metal concentrations were determined in the intestinal parasites acanthocephalans, which are known for their high affinity for metal accumulation. Metallothionein concentrations were also determined in three chub organs, as a commonly applied biomarker of metal exposure. Based on the metal concentrations in the river water, the Sava River was defined as weakly contaminated and mainly comparable with unpolluted rivers, which enabled the analyses of physiological variability of metal and metallothionein concentrations in the chub organs, as well as the establishment of their constitutive levels

    Steroid receptor expression in the fish inner ear varies with sex, social status, and reproductive state

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gonadal and stress-related steroid hormones are known to influence auditory function across vertebrates but the cellular and molecular mechanisms responsible for steroid-mediated auditory plasticity at the level of the inner ear remain unknown. The presence of steroid receptors in the ear suggests a direct pathway for hormones to act on the peripheral auditory system, but little is known about which receptors are expressed in the ear or whether their expression levels change with internal physiological state or external social cues. We used qRT-PCR to measure mRNA expression levels of multiple steroid receptor subtypes (estrogen receptors: ERα, ERβa, ERβb; androgen receptors: ARα, ARβ; corticosteroid receptors: GR2, GR1a/b, MR) and aromatase in the main hearing organ of the inner ear (saccule) in the highly social African cichlid fish <it>Astatotilapia burtoni</it>, and tested whether these receptor levels were correlated with circulating steroid concentrations.</p> <p>Results</p> <p>We show that multiple steroid receptor subtypes are expressed within the main hearing organ of a single vertebrate species, and that expression levels differ between the sexes. We also show that steroid receptor subtype-specific changes in mRNA expression are associated with reproductive phase in females and social status in males. Sex-steroid receptor mRNA levels were negatively correlated with circulating estradiol and androgens in both males and females, suggesting possible ligand down-regulation of receptors in the inner ear. In contrast, saccular changes in corticosteroid receptor mRNA levels were not related to serum cortisol levels. Circulating steroid levels and receptor subtype mRNA levels were not as tightly correlated in males as compared to females, suggesting different regulatory mechanisms between sexes.</p> <p>Conclusions</p> <p>This is the most comprehensive study of sex-, social-, and reproductive-related steroid receptor mRNA expression in the peripheral auditory system of any single vertebrate. Our data suggest that changes in steroid receptor mRNA expression in the inner ear could be a regulatory mechanism for physiological state-dependent auditory plasticity across vertebrates.</p
    corecore