133 research outputs found
Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin
Pathological processes involved in the initiation of rheumatoid synovitis remain unclear. We undertook the present study to identify immune and stromal processes that are present soon after the clinical onset of rheumatoid arthritis ( RA) by assessing a panel of T cell, macrophage, and stromal cell related cytokines and chemokines in the synovial fluid of patients with early synovitis. Synovial fluid was aspirated from inflamed joints of patients with inflammatory arthritis of duration 3 months or less, whose outcomes were subsequently determined by follow up. For comparison, synovial fluid was aspirated from patients with acute crystal arthritis, established RA and osteoarthritis. Rheumatoid factor activity was blocked in the synovial fluid samples, and a panel of 23 cytokines and chemokines measured using a multiplex based system. Patients with early inflammatory arthritis who subsequently developed RA had a distinct but transient synovial fluid cytokine profile. The levels of a range of T cell, macrophage and stromal cell related cytokines ( e. g. IL-2, IL-4, IL-13, IL-17, IL-15, basic fibroblast growth factor and epidermal growth factor) were significantly elevated in these patients within 3 months after symptom onset, as compared with early arthritis patients who did not develop RA. In addition, this profile was no longer present in established RA. In contrast, patients with non-rheumatoid persistent synovitis exhibited elevated levels of interferon-gamma at initiation. Early synovitis destined to develop into RA is thus characterized by a distinct and transient synovial fluid cytokine profile. The cytokines present in the early rheumatoid lesion suggest that this response is likely to influence the microenvironment required for persistent RA
Pathogenesis of Scleroderma
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65784/1/j.1365-4362.1984.tb05678.x.pd
Phase 1b randomized, double-blind study of namilumab, an anti-granulocyte macrophage colony-stimulating factor monoclonal antibody, in mild-to-moderate rheumatoid arthritis
Change from baseline in swollen (a) and tender (b) joint counts. *Error bars show upper SE for placebo and lower SE for namilumab. SE standard error, SJC swollen joint count, TJC tender joint count. (PDF 1292 kb
Requirement of Podocalyxin in TGF-Beta Induced Epithelial Mesenchymal Transition
Epithelial mesenchymal transition (EMT) is characterized by the development of mesenchymal properties such as a fibroblast-like morphology with altered cytoskeletal organization and enhanced migratory potential. We report that the expression of podocalyxin (PODXL), a member of the CD34 family, is markedly increased during TGF-β induced EMT. PODXL is enriched on the leading edges of migrating A549 cells. Silencing of podocalyxin expression reduced cell ruffle formation, spreading, migration and affected the expression patterns of several proteins that normally change during EMT (e.g., vimentin, E-cadherin). Cytoskeletion assembly in EMT was also found to be dependent on the production of podocalyin. Compositional analysis of podocalyxin containing immunoprecipitates revealed that collagen type 1 was consistently associated with these isolates. Collagen type 1 was also found to co-localize with podocalyxin on the leading edges of migrating cells. The interactions with collagen may be a critical aspect of podocalyxin function. Podocalyxin is an important regulator of the EMT like process as it regulates the loss of epithelial features and the acquisition of a motile phenotype
Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies.
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that primarily affects the lining of the synovial joints and is associated with progressive disability, premature death, and socioeconomic burdens. A better understanding of how the pathological mechanisms drive the deterioration of RA progress in individuals is urgently required in order to develop therapies that will effectively treat patients at each stage of the disease progress. Here we dissect the etiology and pathology at specific stages: (i) triggering, (ii) maturation, (iii) targeting, and (iv) fulminant stage, concomitant with hyperplastic synovium, cartilage damage, bone erosion, and systemic consequences. Modern pharmacologic therapies (including conventional, biological, and novel potential small molecule disease-modifying anti-rheumatic drugs) remain the mainstay of RA treatment and there has been significant progress toward achieving disease remission without joint deformity. Despite this, a significant proportion of RA patients do not effectively respond to the current therapies and thus new drugs are urgently required. This review discusses recent advances of our understanding of RA pathogenesis, disease modifying drugs, and provides perspectives on next generation therapeutics for RA
- …