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Abstract Despite the great enthusiasm about tissue

engineering during the 1980s and the many significant

basic observations made since then, the clinical application

of tissue-engineered products has been limited. However,

the prospect of creating new human tissues and organs is

still exciting and continues to be a significant challenge for

scientists and clinicians. A human arm is an extremely

complicated biological construction. Considering regrow-

ing a human arm requires asking about the current state-of-

the-art of tissue engineering and the real capabilities that it

may offer within a realistic time horizon. This work briefly

addresses the state-of-the-art in the fields of cells and

scaffolds that have high regenerative potential. Additional

tools that are required to reconstruct more complex parts of

the body, such as a human arm, seem achievable with the

already available more sophisticated culture systems

including three-dimensional organization, dynamic condi-

tions and co-cultures. Finally, we present results on cell

differentiation and cell and tissue maturation in culture

when cells are exposed to mechanical forces. We postulate

that in the foreseeable future even such complicated

structures such as a human arm will be regrown in full

in vitro under the conditions of a mechanically controlled

co-culture system.

1 Introduction

Responding to Joachim Kohn’s challenge to consider the

ability of regrowing a human arm, we naturally turned to

regenerative medicine. According to the most concise

description given by Mason, ‘‘regenerative medicine

replaces or regenerates human cells, tissue or organs to

restore or establish normal function’’ [1]. The concept we

propose is based on the possibility of obtaining ex vivo a

functional construction, which mimics both the appearance

and function of a human limb. It would consist of a tem-

porary scaffold and the patient’s own biological material.

Our optimism is based on the opportunities offered by

modern tissue engineering (TE). Already 15 years ago,

McCarthy cited Robert Langer: ‘‘…Tissue engineering is at

the stage that genetic engineering was at in 1981—no

products approved, but some on the horizon. It is a

potentially explosive area…’’ [2]. To the disappointment of

many of us, the current number of clinical applications of

TE products is still modest.

The majority of TE products have been introduced on

the medical market in the United States of America

(USA) [3]. In the European Union (EU), the appropriate

approval procedure was regulated only at the end of 2008

[4]. This new policy may open new possibilities, although

TE products have been classified in the EU as medicinal

products and as such are subject to a costly and time

consuming approval procedure. At the same time, sig-

nificant scientific progress is being made in all fields that

contribute to regenerative medicine: stem cell research,

sophisticated scaffolds for cell manipulation and trans-

plantation, and complex co-culture systems in vitro. In

this paper, we present a brief review of the key areas of

progress that bring us closer to successfully regrowing a

human arm.
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2 From replacement to regeneration

The question—can we or can we not regrow a human

arm?—came at a moment when, after years of investiga-

tions, biomaterials have been successfully implemented in

the clinical setting as replacements for various tissues.

During the last two decades, biomaterial scaffolds

especially designed for TE applications have been pro-

posed [5]. Interestingly, although a huge variety of syn-

thetic implantable materials is available, the majority of TE

products on the medical market are based on the scaffolds

of natural origin (Table 1). This indicates that the real

expansion of sophisticated man-made scaffolds approved

for TE applications is still to come. There are other factors

that justify this expectation. The number of publications

found in the pubmed database up to March 2010 was five

times higher for ‘‘bone TE’’ as compared to ‘‘skin TE’’,

while the relation between the TE products on the market

was reversed (Table 1). At the same time, the peak of

patents in bone TE in the 1985–2010 was noted in 2002

while the growing trend for publications in this field per-

sists [6]. This would confirm the patent-publication-market

approval order.

Another important issue is a growing interest in under-

standing cell-material interactions [7]. Thus, in a short time

we may have the benefit of not only cell tolerating mate-

rials, but potentially also cell-instructive materials, which

opens new possibilities for advanced ex vivo creation of

replacement tissues.

3 Cells as the main players

Cell-based concepts for regenerative medicine became

possible as a result of availability of cells—successfully

manipulated in vitro—with the capability to make tissue.

The choice of cell source and cell type(s) is critical to

success. In brief, initially, lineage-committed cells

Table 1 TE products currently available on the medical market

Intended use Product name (Company) Cell type used Scaffold/material used

Wound healing, burns,

diabetic and venous leg

ulcers

Dermagraft� (Shire regenerative

medicine, st Helier, Jersey)

Allogenic fibroblasts Bioabsorbable polyglactin mesh

Apligraf (Organogenesis Inc.,

Canton, MA, USA)

Allogenic fibroblasts and

keratinocytes

Type I bovine collagen matrix

MySkin (Altrika Ltd, Sheffield,

UK)

Autologous keratinocytes Silicone coated with a chemically

controlled plasma polymer film

OrCell (Forticell Bioscience,

Englewood Cliffs, NJ, USA)

Allogenic fibroblasts and

layer of keratinocytes

Type I bovine collagen sponge

PolyActive (HC Implants BV,

leiden, Netherlands)

Autologous cultured

fibroblasts and

keratinocytes

A compound of polyethyleneoxide

terephthalate and polybutylene

terephthalate

Cartilage defects Hyalograft 3D (Fidia Farmaceutici

s.p.a.)

Autologous chondrocytes Hyaluronic acid

Bioseed-C (BioTissue

Technologies, GmbH, Freiburg,

Germany)

Autologous chondrocytes A polyglycolic/polylactic acid and

polydioxane based material

CaReS� (Arthro-Kinetics,

Germany)

Autologous chondrocytes Rat collagen type I

J-tec, Japan Tissue Engineering Co Autologous chondrocytes Atelocollagen gel

Novocart Inject Novocart 3D

(Melsungen, Germany)

Autologous chondrocytes Polymerizable hydrogel Collagen type I

Bony voids, gaps FormaGraft (NuVasive, San Diego,

CA, USA)

Autologous bone marrow

aspiratea
Hydroxyapatite, beta-tricalcium phosphate

and bovine collagen granules

Healos� (DePuy Synthes, Warsaw,

IN, USA)

Autologous bone marrow

aspirate

Type I bovine collagen fibers coated with

hydroxyapatite

Vitoss� Foam (Orthovita/Stryker,

Malvern, PA, USA)

Autologous bone marrow

aspiratea
B-TCP, Collagen, bioactive glass

Grafton (Biohorizons, Birmingham,

AL, USA

Autologous bone marrow

aspiratea
DBM

CopiOs (Zimmer, Warsaw, IN,

USA)

Autologous bone marrow

aspirate

Autologous bone marrow aspirate

a As an option
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harvested from the tissues were considered the major cell

type for TE applications. Chondrocytes were among the

first cells pursued in the field of TE [8]. Green demon-

strated successful rabbit knee cartilage regeneration by

chondrocytes seeded on demineralized bone. Soon after,

Burke et al. [9] generated the first tissue engineered skin

using a collagen matrix and dermal fibroblasts, followed by

successful generation of epidermal sheets for large burn

wounds [10, 11]. Despite huge progress in cell culture and

discovery of alternative, multi- or pluripotent cell types,

tissue specific, pre-differentiated (lineage-committed) cells

enjoy the attention of the TE field and, for now, are

indispensable as a component of commercially available

TE products (Table 1). Besides fibroblasts, keratinocytes

and chondrocytes, other lineage-committed cells are under

investigation and will soon to be employed in regeneration

or repair of diverse organ/tissue types, including liver [12–

14], bladder [15], kidney [16] and pancreas [17]. However,

due to low proliferative capacity and accessibility, and

insufficient number, primary cells (lineage committed), in

some cases, are not a viable choice. Such limitation can be

by-passed by use of multipotent stem cells, which can give

rise to mesenchymal and non-mesenchymal tissues in vitro

and in vivo. Since the discovery of bone marrow mesen-

chymal stem cells (BMSC) in early 1960s [18] and their

subsequent characterization [19–21], there has been con-

tinual enthusiasm about the possibilities offered by this

type of cells. However, derivation of BMSC requires an

invasive procedure. Moreover, with age, differentiation and

proliferative potential of BMSCs decline [22, 23]. There-

fore, alternative sources from which to isolate multipotent

stem cells have been subject to intensive investigation.

Among the alternative mesenchymal stem cell sources the

most promising are muscles [24], blood [25], placenta [26],

amnion [27], umbilical cord blood [28], umbilical cord [29]

and adipose tissue [30, 31]. The last seems to be a superior

source of stem cells, with greater yield and availability than

bone marrow [32]. The unique properties of mesenchymal

stem cells, especially their immunosuppressive effect, led

to rapid implementation of stem cell clinical trials for a

broad spectrum of conditions [33, 34]. Even more is

expected from pluripotent stem cells, which have a higher

level of plasticity and therefore, a greater potential for

diverse applications. Another cell type, embryonic stem

cells—ESC [35, 36] discovered in the early 1980s, are

controversial because their derivation has been associated

with destruction of an early embryo.

Fortunately, the generation of induced pluripotent stem

cells (iPS) [37] from somatic cells of human origin has

brought forth another potential source of stem cells for TE,

cellular therapies and, what seems to be at our fingertips,

drug development. The efficiency of obtaining iPS cells is

not satisfactory as yet and much effort is still required to

use iPS in practice [38]. Still, stem cells obtained by

methods free from ethical objections can now be seen on

the horizon [39, 40].

Returning to the challenge of engineering a human arm,

we propose using autologous, multipotent, so-called adult

stem cells, which may be obtained via a minimally invasive

procedure, for example, from adipose tissue. At the same

time, we look toward use of multipotent iPS in the future.

In order to obtain a functional tissue or organ, the cells

should undergo differentiation, so that cells of various

phenotypes will meet in a single complex system. There

are well-documented reports that show that a co-culture is

both feasible and effective.

In particular, vascularization of graft might be enhanced

by a combination of endothelial cells with osteogenic [41–

43] or mesenchymal stem/stromal cells [44–47]. Addi-

tionally, endothelial cells may support osteoblast prolifer-

ation [48]. Successful osteoblast-osteoclast cell co-culture

enabling beneficial cross-talk between those two cell

types were also reported [49, 50]. Coexistence of both cell

types is necessary for balanced bone remodeling in order to

ensure structural integrity. Closely related with osteoclasts

are monocytes/macrophages. Their effect on osteogenesis

and application in TE is currently being investigated in co-

culture with bone marrow stem/stromal cells [51]. Suc-

cessful limb regeneration may also include reconstruction

of osteochondral structures. It has been demonstrated that

osteoblasts and chondrocytes influence each other’s biol-

ogy leading to improved, complex and clinically relevant

bone tissue replacement [52–54].

Obviously, the common culture system for the whole

arm will be extremely complex. Regardless of the

demanding shape and size of the whole bio-device, a

separate issue is that the cells of various phenotypes must

be put into the common system. Clearly, culture medium

preferences, which may be significantly different for the

different types of cells needed to regrow a human arm,

would not all be addressed under such conditions. Here, we

would look to the physicochemical characteristics of the

scaffold materials to provide the appropriate cues for

regenerative support.

4 Significant/substantial role of mechanical factors

There is convincing evidence of a significant effect of

substrate stiffness on cell fate. Cell reaction to the rigidity

of a support in culture was documented in 1997, when cell

spreading, migration and cytoskeletal organization of

fibroblasts on polyacrylamide gels of various stiffness was

found to vary [55]. Intriguing data showing differentiation

of MSCs isolated from bone marrow to three different

phenotypes, i.e., neural, osteogenic and myogenic,
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depending only on the stiffness of the culture substrate

without any biochemical stimulation, were published in

Cell in 2006 [56]. This finding opens new possibilities for

complex constructions such as a whole limb. Progenitor

cells seeded on particular parts of the TE construct, having

different mechanical characteristics, might receive differ-

ent signals appropriate for the desired differentiation

without exposure to regulatory molecules. This is of crucial

importance when the cells of various final/endpoint phe-

notypes are cultured in a common culture system, i.e., in

the same biochemical environment. In addition to the

physicochemical characteristics of the biomaterials scaf-

folds supporting the cells, mechanical inputs will be cen-

trally important for developing the different tissue types.

Mechanical training of tissues being cultured in vitro

offers another even more promising possibility. Examples

of very well organized ligament structure obtained in a

culture of bone marrow cells exposed to a cyclic, well

controlled mechanical stimulation were shown by the

Kaplan group [57]. Tenogenesis of MSC in response to

mechanical stimulation was confirmed also by others [58,

59]. At the same time cyclic mechanical stimulation pro-

motes proliferation and function of smooth muscle cells

distributed in 3D scaffolds [60, 61], it may also promote

organization of blood vessels in a complex multi-tissue

structure.

Promotion of osteoblasts differentiation in response to

cyclic mechanical loading applied in vitro has been

reported in the Dynacell� culture system with the substrate

subjected to deformation [62, 63] and being in contact with

implantable materials [64]. Also, osteoblast differentiation

was recently reported in 3D systems in which cells were

cultured on scaffolds in bioreactors [65–67]; these studies

were performed on various scaffolds, including partially

demineralized bone matrix [67], fibrin matrix [66] or

poly(L-lactic acid) porous scaffolds [65]. They were also

performed under different mechanical conditions.

Mechanically promoted osteogenic stimulation was

achieved in all those situations regardless of the experi-

mental system details. Such findings justify including

mechanical stimulation in bone regeneration strategies.

In addition to formation of tendons, ligaments and bone-

like tissue in vitro, under applied mechanical forces, tissue

engineered cartilage has been obtained under complex

mechanical loading [68, 69]. In the case of cartilage,

combined compression-shear stimulation was found to be

more effective than simple loading [69]. Obtaining carti-

lage under such conditions was documented not only in

culture of animal chondrocytes [68] but also in human

MSC culture [69].

Mechanical training, which seems beneficial for matu-

ration and organization of single tissues or tissue-like

structures, will be critical for the whole organ. Convincing

data showing the significance of cells exercising in vitro for

the functionality of the engineered ex vivo bladder are

widely known. Obviously, creating the whole human arm

in vitro is much more complicated, but not impossible. The

brief review given in this paper shows that the necessary

tools are already available. We also have access to a wide

array of cytocompatible biomaterials representing a broad

spectrum of mechanical characteristics. They can be used

for the construction of the particular tissues and structures

of the human arm and at the same time may serve as

temporary scaffolds for cells. Multipotent autologous cells

may be obtained via minimally invasive surgery, e.g., from

adipose tissue. Their phenotype and function may then be

regulated by both physicochemical characteristics of the

scaffold and exposure to mechanical training. We have

shown here that cells not only tolerate but also respond in a

controlled manner to the dynamic conditions of culture in

various types of bioreactors. The cells also tolerate co-

culture systems, which make possible the construction of

organs consisting of cells of various phenotypes. As a

result the required tissues may be obtained in vitro due to

the responses of the patient’s own cells under the condi-

tions applied to the system.

The mechanical system that simulates the activity and

range of motion of the human arm is not necessarily very

difficult to obtain. In one of the experiments from the

Kaplan group, cells were exposed to mechanical stimula-

tion within an Instron Material Tester [67]. Much more

complicated systems dedicated to testing orthopaedic

endoprosthesis and conducting orthopaedic kinematics

studies under several degrees of freedom are commercially

available. They enable using a combination of various

types of loading and motions that simulate physiological

activity. Such devices for fatigue tests provide a possibility

of prolonged observation in a wet environment and might

be a perfect basis for constructing a bioreactor for human

arm manufacturing in vitro.

5 To sum up

The ability to create a full and functional autogenic human

limb in an ex vivo bioreactor seems a futuristic dream

today. However, reports of the very promising possibilities

of engineering tissues in various experimental systems

justify our expectation that the goal of a tissue-engineered

arm may be reached. Smart, well-characterized biomaterial

scaffolds which may influence cells’ fate in a controlled

manner, and endogenous extracellular matrix produced by

a co-cultured mix of a patient’s own cells and organized

under mechanical control in a bioreactor, are suitable tools

to make the sophisticated puzzle pieces of an autologous

human arm engineered in vitro. We have these tools partly
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at hand and partly on the near horizon. Perfectly orches-

trated collaboration of top class scientists in an interdisci-

plinary team is indispensable for a successful outcome. In

this paper, we strongly emphasize the added value coming

from mechanical activation of engineered tissues, which

still seems underestimated. Obviously, transferring the

promising results from small culture systems to the scale of

the whole limb, including the particular difficulty in mak-

ing interfaces with nerves or blood vessels, will be extre-

mely demanding. Preparing the engineered tissues for

anastomose with the appropriate parts of the host tissues

via sophisticated surgery would be also challenging.

However, examples of spectacular complex surgical pro-

cedures, like face transplantation are encouraging in this

respect [70]. On the other hand, preparation for the first

face transplant by Siemionow took about 20 years. Defi-

nitely, we should be very careful in determining the time

horizon for producing a live human limb in vitro. We

believe that a prototype construction might be realistically

achievable within some 20 years. The way from a proto-

type to the GMP clinically approved technology has to be

even longer. Improving the bench-to-bedside pathway is a

well-recognized challenge [71, 72]. Therefore, we may

expect that new solutions in this area will be elaborated in

parallel to the experimental work on regrowing a human

arm in vitro. Altogether, we think that hard scientific data

and technological possibilities already offered by TE or

seen on the horizon justify planning ambitious goals like

regeneration of the human arm. Such challenges in turn

stimulate further progress in regenerative medicine.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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