239 research outputs found

    Peripheral blood B lymphocytes derived from patients with idiopathic pulmonary arterial hypertension express a different RNA pattern compared with healthy controls: a cross sectional study

    Get PDF
    BACKGROUND: Idiopathic pulmonary arterial hypertension (IPAH) is a progressive and still incurable disease. Research of IPAH-pathogenesis is complicated by the lack of a direct access to the involved tissue, the human pulmonary vasculature. Various auto-antibodies have been described in the blood of patients with IPAH. The purpose of the present work was therefore to comparatively analyze peripheral blood B lymphocyte RNA expression characteristics in IPAH and healthy controls. METHODS: Patients were diagnosed having IPAH according to WHO (mean pulmonary arterial pressure > or = 25 mmHg, pulmonary capillary occlusion pressure < or = 15 mmHg, absence of another explaining disease). Peripheral blood B-lymphocytes of patients and controls were immediately separated by density gradient centrifugation and magnetic beads for CD19. RNA was thereafter extracted and analyzed by the use of a high sensitivity gene chip (Affymetrix HG-U133-Plus2) able to analyze 47000 transcripts and variants of human genes. The array data were analyzed by two different softwares, and up-and down-regulations were defined as at least 1.3 fold with standard deviations smaller than fold-changes. RESULTS: Highly purified B-cells of 5 patients with IPAH (mean pulmonary artery pressure 51 +/- 13 mmHg) and 5 controls were analyzed. Using the two different analyzing methods we found 225 respectively 128 transcripts which were up-regulated (1.3-30.7 fold) in IPAH compared with healthy controls. Combining both methods, there were 33 overlapping up-regulated transcripts and no down-regulated B-cell transcripts. CONCLUSION: Patients with IPAH have a distinct RNA expression profile of their peripheral blood B-lymphocytes compared to healthy controls with some clearly up-regulated genes. Our finding suggests that in IPAH patients B cells are activated

    Protective effects of hydrogen-rich saline on monocrotaline-induced pulmonary hypertension in a rat model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydrogen-rich saline has been reported to have antioxidant and anti-inflammatory effects and effectively protect against organ damage. Oxidative stress and inflammation contribute to the pathogenesis and/or development of pulmonary hypertension. In this study, we investigated the effects of hydrogen-rich saline on the prevention of pulmonary hypertension induced by monocrotaline in a rat model.</p> <p>Methods</p> <p>In male Sprague-Dawley rats, pulmonary hypertension was induced by subcutaneous administration of monocrotaline at a concentration of 6 mg/100 g body weight. Hydrogen-rich saline (5 ml/kg) or saline was administred intraperitoneally once daily for 2 or 3 weeks. Severity of pulmonary hypertension was assessed by hemodynamic index and histologic analysis. Malondialdehyde and 8-hydroxy-desoxyguanosine level, and superoxide dismutase activity were measured in the lung tissue and serum. Levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6) in serum were determined with enzyme-linked immunosorbent assay.</p> <p>Results</p> <p>Hydrogen-rich saline treatment improved hemodynamics and reversed right ventricular hypertrophy. It also decreased malondialdehyde and 8-hydroxy-desoxyguanosine levels, and increased superoxide dismutase activity in the lung tissue and serum, accompanied by a decrease in pro-inflammatory cytokines.</p> <p>Conclusions</p> <p>These results suggest that hydrogen-rich saline ameliorates the progression of pulmonary hypertension induced by monocrotaline in rats, which may be associated with its antioxidant and anti-inflammatory effects.</p

    Vascular endothelial growth factor as a non-invasive marker of pulmonary vascular remodeling in patients with bronchitis-type of COPD

    Get PDF
    BACKGROUND: Several studies have indicated that one of the most potent mediators involved in pulmonary vascular remodeling is vascular endothelial growth factor (VEGF). This study was designed to determine whether airway VEGF level reflects pulmonary vascular remodeling in patients with bronchitis-type of COPD. METHODS: VEGF levels in induced sputum were examined in 23 control subjects (12 non-smokers and 11 ex-smokers) and 29 patients with bronchitis-type of COPD. All bronchitis-type patients performed exercise testing with right heart catheterization. RESULTS: The mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR) after exercise were markedly increased in all bronchitis-type patients. However, both parameters after exercise with breathing of oxygen was significantly lower than in those with breathing of room air. To attenuate the effect of hypoxia-induced pulmonary vasoconstriction during exercise, we used the change in mPAP or PVR during exercise with breathing of oxygen as a parameter of pulmonary vascular remodeling. Change in mPAP was significantly correlated with VEGF level in induced sputum from patients with chronic bronchitis (r = 0.73, p = 0.0001). Moreover, change in PVR was also correlated with VEGF level in those patients (r = 0.57, p = 0.003). CONCLUSION: A close correlation between magnitude of pulmonary hypertension with exercise and VEGF level in bronchitis-type patients could be observed. Therefore, these findings suggest the possibility that VEGF level in induced sputum is a non-invasive marker of pulmonary vascular remodeling in patients with bronchitis-type of COPD

    Chronic Allergic Inflammation Causes Vascular Remodeling and Pulmonary Hypertension in Bmpr2 Hypomorph and Wild-Type Mice

    Get PDF
    Loss-of-function mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene have been identified in patients with heritable pulmonary arterial hypertension (PAH); however, disease penetrance is low, suggesting additional factors play a role. Inflammation is associated with PAH and vascular remodeling, but whether allergic inflammation triggers vascular remodeling in individuals with BMPR2 mutations is unknown. Our goal was to determine if chronic allergic inflammation would induce more severe vascular remodeling and PAH in mice with reduced BMPR-II signaling. Groups of Bmpr2 hypomorph and wild-type (WT) Balb/c/Byj mice were exposed to house dust mite (HDM) allergen, intranasally for 7 or 20 weeks to generate a model of chronic inflammation. HDM exposure induced similar inflammatory cell counts in all groups compared to controls. Muscularization of pulmonary arterioles and arterial wall thickness were increased after 7 weeks HDM, more severe at 20 weeks, but similar in both groups. Right ventricular systolic pressure (RVSP) was measured by direct cardiac catheterization to assess PAH. RVSP was similarly increased in both HDM exposed groups after 20 weeks compared to controls, but not after 7 weeks. Airway hyperreactivity (AHR) to methacholine was also assessed and interestingly, at 20 weeks, was more severe in HDM exposed Bmpr2 hypomorph mice versus WT. We conclude that chronic allergic inflammation caused PAH and while the severity was mild and similar between WT and Bmpr2 hypomorph mice, AHR was enhanced with reduced BMPR-II signaling. These data suggest that vascular remodeling and PAH resulting from chronic allergic inflammation occurs independently of BMPR-II pathway alterations

    Are ICD-10 codes appropriate for performance assessment in asthma and COPD in general practice? Results of a cross sectional observational study

    Get PDF
    BACKGROUND: The increasing prevalence and impact of obstructive lung diseases and new insights, reflected in clinical guidelines, have led to concerns about the diagnosis and therapy of asthma and COPD in primary care. In Germany diagnoses written in medical records are used for reimbursement, which may influence physicians' documentation behaviour. For that reason it is unclear to what respect ICD-10 codes reflect the real problems of the patients in general practice. The aim of this study was to assess the appropriateness of the recorded diagnoses and to determine what diagnostic information is used to guide medical treatment. METHODS: All patients with lower airway symptoms (n = 857) who had attended six general practices between January and June 2003 were included into this cross sectional observational study. Patients were selected from the computerised medical record systems, focusing on ICD-10-codes concerning lower airway diseases (J20-J22, J40-J47, J98 and R05). The performed diagnostic procedures and actual medication for each identified patient were extracted manually. Then we examined the associations between recorded diagnoses, diagnostic procedures and prescribed treatment for asthma and COPD in general practice. RESULTS: Spirometry was used in 30% of the patients with a recorded diagnosis of asthma and in 58% of the patients with a recorded diagnosis of COPD. Logistic regression analysis showed an improved use of spirometry when inhaled corticosteroids were prescribed for asthma (OR = 5.2; CI 2.9–9.2) or COPD (OR = 4.7; CI 2.0–10.6). Spirometry was also used more often when sympathomimetics were prescribed (asthma: OR = 2.3; CI 1.2–4.2; COPD: OR = 4.1; CI 1.8–9.4). CONCLUSIONS: This study revealed that spirometry was used more often when corticosteroids or sympathomimetics were prescribed. The findings suggest that treatment was based on diagnostic test results rather than on recorded diagnoses. The documented ICD-10 codes may not always reflect the real status of the patients. Thus medical care for asthma and COPD in general practice may be better than initially found on the basis of recorded diagnoses, although further improvement of practice patterns in asthma and COPD is still necessary

    Serum VEGF levels are related to the presence of pulmonary arterial hypertension in systemic sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association between systemic sclerosis and pulmonary arterial hypertension (PAH) is well recognized. Vascular endothelial growth factor (VEGF) has been reported to play an important role in pulmonary hypertension. The aim of the present study was to examine the relationship between systolic pulmonary artery pressure, clinical and functional manifestations of the disease and serum VEGF levels in systemic sclerosis.</p> <p>Methods</p> <p>Serum VEGF levels were measured in 40 patients with systemic sclerosis and 13 control subjects. All patients underwent clinical examination, pulmonary function tests and echocardiography.</p> <p>Results</p> <p>Serum VEGF levels were higher in systemic sclerosis patients with sPAP ≥ 35 mmHg than in those with sPAP < 35 mmHg (352 (266, 462 pg/ml)) vs (240 (201, 275 pg/ml)) (p < 0.01), while they did not differ between systemic sclerosis patients with sPAP < 35 mmHg and controls. Serum VEGF levels correlated to systolic pulmonary artery pressure, to diffusing capacity for carbon monoxide and to MRC dyspnea score. In multiple linear regression analysis, serum VEGF levels, MRC dyspnea score, and D<sub>LCO </sub>were independent predictors of systolic pulmonary artery pressure.</p> <p>Conclusion</p> <p>Serum VEGF levels are increased in systemic sclerosis patients with sPAP ≥ 35 mmHg. The correlation between VEGF levels and systolic pulmonary artery pressure may suggest a possible role of VEGF in the pathogenesis of PAH in systemic sclerosis.</p

    Vascular endothelial growth factor: an angiogenic factor reflecting airway inflammation in healthy smokers and in patients with bronchitis type of chronic obstructive pulmonary disease?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with bronchitis type of chronic obstructive pulmonary disease (COPD) have raised vascular endothelial growth factor (VEGF) levels in induced sputum. This has been associated with the pathogenesis of COPD through apoptotic and oxidative stress mechanisms. Since, chronic airway inflammation is an important pathological feature of COPD mainly initiated by cigarette smoking, aim of this study was to assess smoking as a potential cause of raised airway VEGF levels in bronchitis type COPD and to test the association between VEGF levels in induced sputum and airway inflammation in these patients.</p> <p>Methods</p> <p>14 current smokers with bronchitis type COPD, 17 asymptomatic current smokers with normal spirometry and 16 non-smokers were included in the study. VEGF, IL-8, and TNF-α levels in induced sputum were measured and the correlations between these markers, as well as between VEGF levels and pulmonary function were assessed.</p> <p>Results</p> <p>The median concentrations of VEGF, IL-8, and TNF-α were significantly higher in induced sputum of COPD patients (1,070 pg/ml, 5.6 ng/ml and 50 pg/ml, respectively) compared to nonsmokers (260 pg/ml, 0.73 ng/ml, and 15.4 pg/ml, respectively, p < 0.05) and asymptomatic smokers (421 pg/ml, 1.27 ng/ml, p < 0.05, and 18.6 pg/ml, p > 0.05, respectively). Significant correlations were found between VEGF levels and pack years (r = 0.56, p = 0.046), IL-8 (r = 0.64, p = 0.026) and TNF-α (r = 0.62, p = 0.031) levels both in asymptomatic and COPD smokers (r = 0.66, p = 0.027, r = 0.67, p = 0.023, and r = 0.82, p = 0.002, respectively). No correlation was found between VEGF levels in sputum and pulmonary function parameters.</p> <p>Conclusion</p> <p>VEGF levels are raised in the airways of both asymptomatic and COPD smokers. The close correlation observed between VEGF levels in the airways and markers of airway inflammation in healthy smokers and in smokers with bronchitis type of COPD is suggestive of VEGF as a marker reflecting the inflammatory process that occurs in smoking subjects without alveolar destruction.</p

    Cigarette smoke induces PTX3 expression in pulmonary veins of mice in an IL-1 dependent manner

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is associated with abnormal inflammatory responses and structural alterations of the airways, lung parenchyma and pulmonary vasculature. Since Pentraxin-3 (PTX3) is a tuner of inflammatory responses and is produced by endothelial and inflammatory cells upon stimuli such as interleukin-1β (IL-1β), we hypothesized that PTX3 is involved in COPD pathogenesis.</p> <p>Methods and Results</p> <p>We evaluated whether cigarette smoke (CS) triggers pulmonary and systemic PTX3 expression <it>in vivo </it>in a murine model of COPD. Using immunohistochemical (IHC) staining, we observed PTX3 expression in endothelial cells of lung venules and veins but not in lung arteries, airways and parenchyma. Moreover, ELISA on lung homogenates and semi-quantitative scoring of IHC-stained sections revealed a significant upregulation of PTX3 upon subacute and chronic CS exposure. Interestingly, PTX3 expression was not enhanced upon subacute CS exposure in IL-1RI KO mice, suggesting that the IL-1 pathway is implicated in CS-induced expression of vascular PTX3. Serum PTX3 levels increased rapidly but transiently after acute CS exposure.</p> <p>To elucidate the functional role of PTX3 in CS-induced responses, we examined pulmonary inflammation, protease/antiprotease balance, emphysema and body weight changes in WT and Ptx3 KO mice. CS-induced pulmonary inflammation, peribronchial lymphoid aggregates, increase in MMP-12/TIMP-1 mRNA ratio, emphysema and failure to gain weight were not significantly different in Ptx3 KO mice compared to WT mice. In addition, Ptx3 deficiency did not affect the CS-induced alterations in the pulmonary (mRNA and protein) expression of VEGF-A and FGF-2, which are crucial regulators of angiogenesis.</p> <p>Conclusions</p> <p>CS increases pulmonary PTX3 expression in an IL-1 dependent manner. However, our results suggest that either PTX3 is not critical in CS-induced pulmonary inflammation, emphysema and body weight changes, or that its role can be fulfilled by other mediators with overlapping activities.</p
    corecore