19 research outputs found
Metabotropic glutamate receptor 5 as a potential target for smoking cessation
Rationale Most habitual smokers find it difficult to quit smoking because they are dependent upon the nicotine present in tobacco smoke. Tobacco dependence is commonly treated pharmacologically using nicotine replacement therapy or drugs, such as varenicline, that target the nicotinic receptor. Relapse rates, however, remain high and there remains a need to develop novel non-nicotinic pharmacotherapies for the dependence that are more effective than existing treatments. Objective The purpose of this paper is to review the evidence from preclinical and clinical studies that drugs that antagonise the metabotropic glutamate receptor 5 (mGluR5) in the brain are likely to be efficacious as treatments for tobacco dependence. Results Imaging studies reveal that chronic exposure to tobacco smoke reduces the density of mGluR5s in human brain. Preclinical results demonstrate that negative allosteric modulators (NAMs) at mGluR5 attenuate both nicotine self-administration and the reinstatement of responding evoked by exposure to conditioned cues paired with nicotine delivery. They also attenuate the effects of nicotine on brain dopamine pathways implicated in addiction. Conclusions Although mGluR5 NAMs attenuate most of the key facets of nicotine dependence they potentiate the symptoms of nicotine withdrawal. This may limit their value as smoking cessation aids. The NAMs that have been employed most widely in preclinical studies of nicotine dependence have too many \u201coff target\u201d effects to be used clinically. However newer mGluR5 NAMs have been developed for clinical use in other indications. Future studies will determine if these agents can also be used effectively and safely to treat tobacco dependence
Metabotropic Glutamate Receptors 5 Blockade Reverses Spatial Memory Deficits in a Mouse Model of Parkinson's Disease
International audienceno abstrac
Is there a future for mGlu5-positive allosteric modulators in absence epilepsy? A comparison with ethosuximide
Contains fulltext :
175798.pdf (Publisher’s version ) (Open Access)Ethosuximide is the drug of choice in the treatment of various types of absence seizures. However, there is plenty of room for other anti-absence drugs, considering that not all subjects (57-74%) become seizure-free and about 47% of ethosuximide therapy fails. New anti-absence drugs may target or modulate glutamatergic and or GABAergic neurotransmission, the key players in the circuitry involved in the cortico-thalamo-cortical oscillations responsible for the highly stereotyped spike-wave discharges (SWDs). Cortical highly excitable cells in the focal region form the trigger for the occurrence of SWDs. In contrast, enhanced tonic inhibition is dominant in the thalamus. Biochemical studies have shown that symptomatic WAG/Rij rats differ from age-matched controls in metabotropic glutamate (mGlu) receptor expression and function: mGlu5 receptor expression and function are increased in the somatosensory cortex, and mGlu1 receptor expression is decreased in the thalamus. The two group I mGlu receptor-positive allosteric modulators (PAMs) VU0360172 and RO0711401 have an interesting profile in acute and (sub)chronic pharmacological studies and produce a dose-dependent decrease of SWDs. Moreover, both compounds are effective in reducing SWDs in the cortex and thalamus. Interestingly, the GABA reuptake blocker tiagabine reduces SWDs in the cortex and not in the thalamus, while the efficacy of ethosuximide is higher in the cortex than in the thalamus. It is thought that VU0360172 stimulates cortex GABA interneurons, which inhibit highly excitable cortical neurons in the focal area. In the thalamus, VU0360172 most likely reduces tonic inhibition. Thus, group I mGlu receptor PAMs might be further developed as anti-absence drugs, with putative disease-modifying effects on epileptogenesis. The preclinical profile of group I mGlu receptor PAMS deserves to be further explored in models of generalized epilepsy and focal types of epilepsy