2,277 research outputs found

    Latent structure blockmodels for Bayesian spectral graph clustering

    Get PDF
    Spectral embedding of network adjacency matrices often produces node representations living approximately around low-dimensional submanifold structures. In particular, hidden substructure is expected to arise when the graph is generated from a latent position model. Furthermore, the presence of communities within the network might generate community-specific submanifold structures in the embedding, but this is not explicitly accounted for in most statistical models for networks. In this article, a class of models called latent structure block models (LSBM) is proposed to address such scenarios, allowing for graph clustering when community-specific one dimensional manifold structure is present. LSBMs focus on a specific class of latent space model, the random dot product graph (RDPG), and assign a latent submanifold to the latent positions of each community. A Bayesian model for the embeddings arising from LSBMs is discussed, and shown to have a good performance on simulated and real world network data. The model is able to correctly recover the underlying communities living in a one-dimensional manifold, even when the parametric form of the underlying curves is unknown, achieving remarkable results on a variety of real data

    Applicazioni della matematica fuzzy per la selezione dei progetti conservativi nei siti archeologici

    Get PDF
    The Authors deal with the problem of a standardised but clear and easily understood framework for the strategic decisions involved in the selection among the diverse projects for the conservation and cultural and economic enhancement of archaeological sites. The aim of the paper is to explore the possibility of the use of fuzzy logic to create a hierarchy among the different projects. We propose the use of fuzzy numbers mathematics for the joint treatment of technical, landscape impact, economic and humanistic aspects in selecting the best conservation projects. The basic elements for the definition and the arithmetic of fuzzy numbers are given and a procedure based on the ordering is implemented. Finally, an application relating to an archaeological site on the Mediterranean Sea (Nora, Sardinia) is presented

    Freeze/Thaw-Induced Embolism: Probability of Critical Bubble Formation Depends on Speed of Ice Formation

    No full text
    Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.We are grateful for support from the Andrew W. Mellon Foundation and the Materials Research Science and Engineering Center at Harvard University. We also thank the Australian Research Council for support (DP110105380)

    Discovery of a new accreting millisecond X-ray pulsar in the globular cluster NGC 2808

    Get PDF
    We report on the discovery of coherent pulsations at a period of 2.9 ms from the X-ray transient MAXI J0911-655 in the globular cluster NGC 2808. We observed X-ray pulsations at a frequency of 339.97\sim339.97 Hz in three different observations of the source performed with XMM-Newton and NuSTAR during the source outburst. This newly discovered accreting millisecond pulsar is part of an ultra-compact binary system characterised by an orbital period of 44.344.3 minutes and a projected semi-major axis of 17.6\sim17.6 lt-ms. Based on the mass function we estimate a minimum companion mass of 0.024 M_{\odot}, which assumes a neutron star mass of 1.4 M_{\odot} and a maximum inclination angle of 7575^{\circ} (derived from the lack of eclipses and dips in the light-curve of the source). We find that the companion star's Roche-Lobe could either be filled by a hot (5×1065\times 10^{6} K) pure helium white dwarf with a 0.028 M_{\odot} mass (implying i58i\simeq58^{\circ}) or an old (>5 Gyr) brown dwarf with metallicity abundances between solar/sub-solar and mass ranging in the interval 0.065-0.085 M_{\odot} (16 < ii < 21). During the outburst the broad-band energy spectra are well described by a superposition of a weak black-body component (kT\sim 0.5 keV) and a hard cutoff power-law with photon index Γ\Gamma \sim 1.7 and cut-off at a temperature kTe_e\sim 130 keV. Up to the latest Swift-XRT observation performed on 2016 July 19 the source has been observed in outburst for almost 150 days, which makes MAXI J0911-655 the second accreting millisecond X-ray pulsar with outburst duration longer than 100 days.Comment: 7 pages, 5 figures, accepted for publication in A&

    Soft x-rays absorption and high-resolution powder x-ray diffraction study of superconducting CaxLa(1-x)Ba(1.75-x)La(0.25+x)Cu3Oy system

    Full text link
    We have studied the electronic structure of unoccupied states measured by O K-edge and Cu L-edge x-ray absorption spectroscopy (XAS), combined with crystal structure studied by high resolution powder x-ray diffraction (HRPXRD), of charge-compensated layered superconducting CaxLa(1-x)Ba(1.75-x)La(0.25+x)Cu3Oy (0<x<0.4, 6.4<y<7.3) cuprate. A detailed analysis shows that, apart from hole doping, chemical pressure on the electronically active CuO2 plane due to the lattice mismatch with the spacer layers greatly influences the superconducting properties of this system. The results suggest chemical pressure to be the most plausible parameter to control the maximum critical temperatures (Tcmax) in different cuprate families at optimum hole density.Comment: 14 pages, 11 figures, accepted for publication in Journal of Physics and Chemistry of Solid

    Star count density profiles and structural parameters of 26 Galactic globular clusters

    Get PDF
    We used a proper combination of high-resolution HST observations and wide-field ground based data to derive the radial star density profile of 26 Galactic globular clusters from resolved star counts (which can be all freely downloaded on-line). With respect to surface brightness (SB) profiles (which can be biased by the presence of sparse, bright stars), star counts are considered to be the most robust and reliable tool to derive cluster structural parameters. For each system a detailed comparison with both King and Wilson models has been performed and the most relevant best-fit parameters have been obtained. This is the largest homogeneous catalog collected so far of star count profiles and structural parameters derived therefrom. The analysis of the data of our catalog has shown that: (1) the presence of the central cusps previously detected in the SB profiles of NGC 1851, M13 and M62 is not confirmed; (2) the majority of clusters in our sample are fitted equally well by the King and the Wilson models; (3) we confirm the known relationship between cluster size (as measured by the effective radius) and galactocentric distances; (4) the ratio between the core and the effective radii shows a bimodal distribution, with a peak at ~ 0.3 for about 80% of the clusters, and a secondary peak at ~ 0.6 for the remaining 20%. Interestingly, the main peak turns out to be in agreement with what expected from simulations of cluster dynamical evolution and the ratio between these two radii well correlates with an empirical dynamical age indicator recently defined from the observed shape of blue straggler star radial distribution, thus suggesting that no exotic mechanisms of energy generation are needed in the cores of the analyzed clusters.Comment: Accepted for publication in The Astrophysical Journal; 19 pages (emulateapj style), 15 figures, 2 table

    Testing Rate Dependent corrections on timing mode EPIC-pn spectra of the accreting Neutron Star GX 13+1

    Get PDF
    When the EPIC-pn instrument on board XMM-Newton is operated in Timing mode, high count rates (>100 cts/s) of bright sources may affect the calibration of the energy scale, resulting in a modification of the real spectral shape. The corrections related to this effect are then strongly important in the study of the spectral properties. Tests of these calibrations are more suitable in sources which spectra are characterised by a large number of discrete features. Therefore, in this work, we carried out a spectral analysis of the accreting Neutron Star GX 13+1, which is a dipping source with several narrow absorption lines and a broad emission line in its spectrum. We tested two different correction approaches on an XMM-Newton EPIC-pn observation taken in Timing mode: the standard Rate Dependent CTI (RDCTI or epfast) and the new, Rate Dependent Pulse Height Amplitude (RDPHA) corrections. We found that, in general, the two corrections marginally affect the properties of the overall broadband continuum, while hints of differences in the broad emission line spectral shape are seen. On the other hand, they are dramatically important for the centroid energy of the absorption lines. In particular, the RDPHA corrections provide a better estimate of the spectral properties of these features than the RDCTI corrections. Indeed the discrete features observed in the data, applying the former method, are physically more consistent with those already found in other Chandra and XMM-Newton observations of GX 13+1.Comment: Accepted for publication in MNRAS; 10 pages, 8 figure
    corecore