409 research outputs found

    Dark Matter at the Center and in the Halo of the Galaxy

    Full text link
    All presently known stellar-dynamical constraints on the size and mass of the supermassive compact dark object at the Galactic center are consistent with a ball of self-gravitating, nearly non-interacting, degenerate fermions with mass between 76 and 491 keV, for degeneracy factor g=2. Sterile neutrinos of 76 keV mass, which are mixed with at least one of the active neutrinos with a mixing angele ~10^{-7}, are produced in about the right amount in the early Universe by incoherent resonant and non-resonant scattering of active neutrinos having asymmetry of ~0.01. The former process yields sterile neutrinos with a quasi-degenerate spectrum while the latter leads to a thermal spectrum. As the production mechanism of the sterile neutrino is consistent with the constraints from large scale structure formation, core collapse supernovae, and diffuse X-ray background, it could be the dark matter particle of the Universe.Comment: 6 pages, to appear in the Beyond 2003 conference proceeding

    Phase Transitions and Critical Behavior for Charged Black Holes

    Full text link
    We investigate the thermodynamics of a four-dimensional charged black hole in a finite cavity in asymptotically flat and asymptotically de Sitter space. In each case, we find a Hawking-Page-like phase transition between a black hole and a thermal gas very much like the known transition in asymptotically anti-de Sitter space. For a ``supercooled'' black hole--a thermodynamically unstable black hole below the critical temperature for the Hawking-Page phase transition--the phase diagram has a line of first-order phase transitions that terminates in a second order point. For the asymptotically flat case, we calculate the critical exponents at the second order phase transition and find that they exactly match the known results for a charged black hole in anti-de Sitter space. We find strong evidence for similar phase transitions for the de Sitter black hole as well. Thus many of the thermodynamic features of charged anti-de Sitter black holes do not really depend on asymptotically anti-de Sitter boundary conditions; the thermodynamics of charged black holes is surprisingly universal.Comment: LaTeX, 14 pages, 9 eps figures; higher resolution figures available on reques

    A renormalized large-n solution of the U(n) x U(n) linear sigma model in the broken symmetry phase

    Get PDF
    Dyson-Schwinger equations for the U(n) x U(n) symmetric matrix sigma model reformulated with two auxiliary fields in a background breaking the symmetry to U(n) are studied in the so-called bare vertex approximation. A large n solution is constructed under the supplementary assumption so that the scalar components are much heavier than the pseudoscalars. The renormalizability of the solution is investigated by explicit construction of the counterterms.Comment: RevTeX4, 14 pages, 2 figures. Version published in Phys. Rev.

    Chaplygin Gas Cosmology - Unification of Dark Matter and Dark Energy

    Get PDF
    The models that unify dark matter and dark energy based upon the Chaplygin gas fail owing to the suppression of structure formation by the adiabatic speed of sound. Including string theory effects, in particular the Kalb-Ramond field, we show how nonadiabatic perturbations allow a successful structure formation.Comment: 7 pages, presented by N. B. at IRGAC 2006, Barcelona, 11-15 July 2006, typos corrected, concluding paragraph slightly expanded, final version, accepted in J. Phys. A, special issu

    Functionalization of semiconductor surfaces by organic layers: Concerted cycloaddition versus stepwise free-radical reaction mechanism

    Get PDF
    In the age when the miniaturization trend that has driven the semiconductor industry is reaching its limits, organic modification of semiconductors is emerging as a field that could give much-needed impetus. We review the current state of understanding of the functionalization of C(100), Si(100), and Ge(100) surfaces through chemisorption of alkenes and alkynes, focussing on adsorbate structural control. While reactions on C(100) show most of the properties expected for concerted cycloaddition reactions such as [2+2] and [4+2] (Diels-Alder) processes, reactions on Si(100) present a wide range of variant behaviour, including in some cases the prominence of non-cycloaddition products. More general stepwise free-radical addition processes are seen to provide a better description of reactions on Si(100), their prominence being attributed to either the non-existence or ineffectiveness of p bonding within surface silicon dimers. The investigations of these systems provide not only insight into driving mechanisms for chemisorption but also motivation for the development of new techniques of organic functionalization on semiconductors

    The motion of stars near the Galactic center: A comparison of the black hole and fermion ball scenarios

    Get PDF
    After a discussion of the properties of degenerate fermion balls, we analyze the orbits of the stars S0-1 and S0-2, which have the smallest projected distances to Sgr A*, in the supermassive black hole as well as in the fermion ball scenarios of the Galactic center. It is shown that both scenarios are consistent with the data, as measured during the last six years by Genzel et al. and Ghez et al. The free parameters of the projected orbit of a star are the unknown components of its velocity v_z and distance z to Sgr A* in 1995.4, with the z-axis being in the line of sight. We show, in the case of S0-1 and S0-2, that the z-v_z phase-space which fits the data, is much larger for the fermion ball than for the black hole scenario. Future measurements of the positions or radial velocities of S0-1 and S0-2 could reduce this allowed phase-space and eventually rule out one of the currently acceptable scenarios. This may shed some light into the nature of the supermassive compact dark object, or dark matter in general at the center of our Galaxy.Comment: 30 pages, 12 figures, Latex, aasms4 styl

    Prediction of novel alloy phases of Al with Sc or Ta

    Get PDF
    Using the evolutionary optimization algorithm, as implemented in the USPEX crystal predictor program, and first principles total energy calculations, the compositional phase diagrams for Al-Sc and Al-Ta alloy systems at zero temperature and pressure have been calculated. In addition to the known binary intermetallic phases, new potentially stable alloys, AlSc3 and AlTa7, have been identified in the Al-poor region of the phase diagram. The dynamic and thermal stability of their lattices has been confirmed from the calculated vibrational normal mode spectra in the harmonic approximation

    Hybrid Chaplygin gas and phantom divide crossing

    Full text link
    Hybrid Chaplygin gas model is put forward, in which the gases play the role of dark energy. For this model the coincidence problem is greatly alleviated. The effective equation of state of the dark energy may cross the phantom divide w=1w=-1. Furthermore, the crossing behaviour is decoupled from any gravity theories. In the present model, w<1w<-1 is only a transient behaviour. There is a de Sitter attractor in the future infinity. Hence, the big rip singularity, which often afflicts the models with matter whose effective equation of state less than -1, is naturally disappear. There exist stable scaling solutions, both at the early universe and the late universe. We discuss the perturbation growth of this model. We find that the index is consistent with observations.Comment: 11 pages, 4 figures, V3: discussions on the perturbation growth added, V4: minor corrections, to match the published versio
    corecore