48 research outputs found

    Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model

    Get PDF
    Plasmodium falciparum causes most of the one million annual deaths from malaria. Drug resistance is widespread and novel agents against new targets are needed to support combination-therapy approaches promoted by the World Health Organization. Plasmodium species are purine auxotrophs. Blocking purine nucleoside phosphorylase (PNP) kills cultured parasites by purine starvation. DADMe-Immucillin-G (BCX4945) is a transition state analogue of human and Plasmodium PNPs, binding with picomolar affinity. Here, we test BCX4945 in Aotus primates, an animal model for Plasmodium falciparum infections. Oral administration of BCX4945 for seven days results in parasite clearance and recrudescence in otherwise lethal infections of P. falciparum in Aotus monkeys. The molecular action of BCX4945 is demonstrated in crystal structures of human and P. falciparum PNPs. Metabolite analysis demonstrates that PNP blockade inhibits purine salvage and polyamine synthesis in the parasites. The efficacy, oral availability, chemical stability, unique mechanism of action and low toxicity of BCX4945 demonstrate potential for combination therapies with this novel antimalarial agent

    Characterization of a recent malaria outbreak in the autonomous indigenous region of Guna Yala, Panama

    Get PDF
    BackgroundThis study aims to describe the epidemiological and entomological factors associated with a recent malaria outbreak that occurred in 2012 in a socially marginalized population from Guna Yala Comarca in Panama.MethodsA descriptive and observational study was conducted by analysing demographic and epidemiological data from all malaria cases registered during 2012 in the Comarca Guna Yala, Panama. Malaria intensity indicators were calculated during the study period. Entomological evaluations were performed monthly, from October to December 2012, in the three communities that presented the most intense malaria transmission during the first semester of 2012. Anopheles breeding habitats were also characterized.ResultsDuring the studied period, 6754 blood smears were examined (17.8 % of the total population), and 143 were confirmed as positive for Plasmodium vivax. A significant increase of malaria transmission risk indicators (API: 3.8/1000, SPR: 2.1 %) was observed in Guna Yula, when compared with previous years, and also in comparison with estimates from the whole country. Anopheles albimanus was the most abundant and widespread (877; 72.0 %) vector species found in the three localities, followed by Anopheles punctimacula (231; 19.0 %) and Anopheles aquasalis (110; 9.0 %). Three An. albimanus pools were positive for P. vivax, showing an overall pooled prevalence estimate of 0.014.ConclusionsData analysis confirmed that during 2012 a malaria epidemic occurred in Guna Yala. Panama. This study provides baseline data on the local epidemiology of malaria in this vulnerable region of Panama. This information will be useful for targeting control strategies by the National Malaria Control Programme

    Notch and Senescence.

    Get PDF
    Cellular senescence, previously thought of as an autonomous tumour suppressor mechanism, is emerging as a phenotype and effector present throughout the life of an organism from embryogenesis to senile decline. Senescent cells have powerful non-autonomous effects upon multiple players within their microenvironment mainly through their secretory phenotype. How senescent cells co-ordinate numerous, sometimes functionally contrasting outputs through their secretome had previously been unclear. The Notch pathway, originally identified for its involvement in Drosophila wing development, has more recently been found to underpin diverse effects in human cancer. Here we discuss recent findings that suggest that Notch is intimately involved in the development of senescence and how it acts to co-ordinate the composition and functional effects of the senescence secretome. We also highlight the complex physical and functional interplay between Notch and p53, critical to both senescence and cancer. Understanding the interplay between Notch, p53 and senescence could allow us develop the therapeutics of the future for cancer and ageing

    Runx1 Loss Minimally Impacts Long-Term Hematopoietic Stem Cells

    Get PDF
    RUNX1 encodes a DNA binding subunit of the core-binding transcription factors and is frequently mutated in acute leukemia, therapy-related leukemia, myelodysplastic syndrome, and chronic myelomonocytic leukemia. Mutations in RUNX1 are thought to confer upon hematopoietic stem cells (HSCs) a pre-leukemic state, but the fundamental properties of Runx1 deficient pre-leukemic HSCs are not well defined. Here we show that Runx1 deficiency decreases both apoptosis and proliferation, but only minimally impacts the frequency of long term repopulating HSCs (LT-HSCs). It has been variously reported that Runx1 loss increases LT-HSC numbers, decreases LT-HSC numbers, or causes age-related HSC exhaustion. We attempt to resolve these discrepancies by showing that Runx1 deficiency alters the expression of several key HSC markers, and that the number of functional LT-HSCs varies depending on the criteria used to score them. Finally, we identify genes and pathways, including the cell cycle and p53 pathways that are dysregulated in Runx1 deficient HSCs

    Neutrophil Paralysis in Plasmodium vivax Malaria

    Get PDF
    Plasmodium vivax is responsible for approximately 60–80% of the malaria cases in the world, and contributes to significant social and economic instability in the developing countries of Latin America and Asia. The pathogenesis of P. vivax malaria is a consequence of host derived inflammatory mediators. Hence, a better understanding of the mechanisms involved in induction of systemic inflammation during P. vivax malaria is critical for the clinical management and prevention of severe disease. The innate immune receptors recognize Plasmodium sp. and initiate a broad spectrum of host defense mechanisms that mediate resistance to infection. However, the innate immune response is the classic “two-edged sword”, and clinical malaria is associated with high levels of circulating pro-inflammatory cytokines. Our findings show that both monocytes and neutrophils are highly activated during malaria. Monocytes produced high levels of IL-1β, IL-6 and TNF-α during acute malaria. On the other hand, neutrophils were a poor source of cytokines, but displayed an enhanced phagocytic activity and superoxide production. Unexpectedly, we noticed an impaired chemotaxis of neutrophils towards an IL-8 (CXCL8) gradient. We proposed that neutrophil paralysis is in part responsible for the enhanced susceptibility to bacterial infection observed in malaria patients

    Developmental gene networks: a triathlon on the course to T cell identity

    Full text link

    WR 238605, chloroquine, and their combinations as blood schizonticides against a chloroquine-resistant strain of Plasmodium vivax in Aotus monkeys

    No full text
    The compound WR 238605 is a primaquine analog being developed by the U.S. Army as an antimalarial drug. Currently, there is no established treatment for Plasmodium vivax parasitemias that are not cured by chloroquine. This study tested WR 238605, chloroquine, and their combinations against a chloroquine-resistant strain of P. vivax (AMRU 1) in Aotus monkeys. A total dose of 3 mg/kg of WR 238605 given at a dosage of 1 mg/kg/day for three days cleared patent parasites in all eight monkeys but recrudescence of parasitemia occurred 15-25 days after initiation of treatment. A total dose of 9 mg/kg of WR 238605 over a three-day period cured all three monkeys of their infections. A total dose of 30 mg/kg of chloroquine did not clear patent infections in three monkeys, whereas a total dose of 60 mg/kg generally (two of three) cleared patent parasitemia but did not cure. Whereas total doses of 30 mg/kg of chloroquine or 3 mg/kg of WR 238605 given alone failed to cure, both drugs given in combination at these dosages cured two of three infections. These results indicate that WR 238605 may be an alternative treatment for chloroquine-resistant vivax malaria
    corecore