7,521 research outputs found

    Monoclonal Antibodies and Flaviviruses: a Possible Option?

    Get PDF
    M. P. Doyle, J. R. Genualdi, A. L. Bailey, N. Kose, et al. (mBio 13:e00512-22, 2022, https://doi.org/10.1128/mBio.00512-22), report on the cloning of a panel of fully human monoclonal antibodies (mAbs) directed against yellow fever virus (YFV). In particular, mAb YFV-136 is endowed with interesting cross-YFV substrain-neutralizing features. The importance of YFV-136 and other mAbs with similar characteristics is related not necessarily only to their possible future use in the clinic but also to their role in a better understanding of the biology of YFV (as well as of other flaviviruses) for the development of effective therapeutic and prophylactic strategies. The emergence and reemergence of different flaviviruses worldwide in the last decades certainly make this a compelling clinical priority

    A generating functional approach to the Hubbard model

    Full text link
    The method of generating functional is generalized to the case of strongly correlated systems, and applied to the Hubbard model. For the electronic Green's function constructed for Hubbard operators, an equation using variational derivatives with respect to the fluctuating fields has been derived and its multiplicative form has been determined. Corrections for the electronic self-energy are calculated up to the second order with respect to the parameter W/U (W width of the band), and a mean field type approximation was formulated, including both charge and spin static fluctuations. The equations for the Bose-like Green's functions have been derived, describing the collective modes: the magnons and doublons. The properties of the poles of the doublon Green's functions depend on electronic filling. The investigation of the special case n=1 demonstrates that the doublon Green's function has a soft mode at the wave vector Q=(pi,pi,...), indicating possible instability of the uniform paramagnetic phase relatively to the two sublattices charge ordering. However this instability should compete with an instability to antiferromagnetic ordering.Comment: 31 pages, 7 figures, to be published in Eur. Phys. J.

    Eclipsing binaries and fast rotators in the Kepler sample. Characterization via radial velocity analysis from Calar Alto

    Full text link
    The Kepler mission has provided high-accurate photometric data in a long time span for more than two hundred thousands stars, looking for planetary transits. Among the detected candidates, the planetary nature of around 15% has been established or validated by different techniques. But additional data is needed to characterize the rest of the candidates and reject other possible configurations. We started a follow-up program to validate, confirm, and characterize some of the planet candidates. In this paper we present the radial velocity analysis (RV) of those presenting large variations, compatible with being eclipsing binaries. We also study those showing large rotational velocities, which prevents us from obtaining the necessary precision to detect planetary-like objects. We present new RV results for 13 Kepler objects of interest (KOIs) obtained with the CAFE spectrograph at the Calar Alto Observatory, and analyze their high-spatial resolution images and the Kepler light curves of some interesting cases. We have found five spectroscopic and eclipsing binaries. Among them, the case of KOI-3853 is of particular interest. This system is a new example of the so-called heartbeat stars, showing dynamic tidal distortions in the Kepler light curve. We have also detected duration and depth variations of the eclipse. We suggest possible scenarios to explain such effect, including the presence of a third substellar body possibly detected in our RV analysis. We also provide upper mass limits to the transiting companions of other six KOIs with large rotational velocities. This property prevents the RV method to obtain the necessary precision to detect planetary-like masses. Finally, we analyze the large RV variations of other two KOIs, incompatible with the presence of planetary-mass objects. These objects are likely to be stellar binaries but a longer timespan is still needed.Comment: Accepted for publication in A&A. 18 pages, 9 figures, 17 tables. This version fixes an error affecting the values of tables A.1-A.13. The text remains unaltere

    Refined physical properties and g',r',i',z',J,H,K transmission spectrum of WASP-23b from the ground

    Full text link
    Multi-band observations of planetary transits using the telescope defocus technique may yield high-quality light curves suitable for refining the physical properties of exoplanets even with small or medium size telescopes. Such observations can be used to construct a broad-band transmission spectrum of transiting planets and search for the presence of strong absorbers. We have thoroughly characterised the orbital ephemeris and physical properties of the transiting planet and host star in the WASP-23b system, constructed a broad-band transmission spectrum of WASP-23b and performed a comparative analysis with theoretical models of hot Jupiters. We observed a complete transit of WASP-23b in seven bands simultaneously, using the GROND instrument on the MPG/ESO 2.2m telescope at La Silla Observatory and telescope defocussing. The optical data were taken in the Sloan g',r',i' and z' bands. The resulting light curves are of high quality, with a root-mean-square scatter of the residual as low as 330ppm in the z'-band, with a cadence of 90s. Near-infrared data were obtained in the JHK bands. We performed MCMC analysis of our photometry plus existing radial velocity data to refine measurements of the ephemeris and physical properties of the WASP-23. We constructed a broad-band transmission spectrum of WASP-23b and compared it with a theoretical transmission spectrum of a Hot Jupiter. We measured the central transit time with a precision about 8s. From this and earlier observations we obtain an orbital period of P=2.9444300+/-0.0000011d. Our analysis also yielded a larger radius and mass for the planet (Rp=1.067+0.045-0.038 RJup and, Mp=0.917+0.040-0.039MJup). The transmission spectrum is marginally flat, given the limited precision of the measurements for the planet radius and poor spectral resolution of the data.Comment: 8 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    Kepler-447b: a hot-Jupiter with an extremely grazing transit

    Full text link
    We present the radial velocity confirmation of the extrasolar planet Kepler-447b, initially detected as a candidate by the Kepler mission. In this work, we analyze its transit signal and the radial velocity data obtained with the Calar Alto Fiber-fed Echelle spectrograph (CAFE). By simultaneously modeling both datasets, we obtain the orbital and physical properties of the system. According to our results, Kepler-447b is a Jupiter-mass planet (Mp=1.370.46+0.48 MJupM_p=1.37^{+0.48}_{-0.46}~M_{\rm Jup}), with an estimated radius of Rp=1.650.56+0.59 RJupR_p=1.65^{+0.59}_{-0.56}~R_{\rm Jup} (uncertainties provided in this work are 3σ3\sigma unless specified). This translates into a sub-Jupiter density. The planet revolves every 7.8\sim7.8 days in a slightly eccentric orbit (e=0.1230.036+0.037e=0.123^{+0.037}_{-0.036}) around a G8V star with detected activity in the Kepler light curve. Kepler-447b transits its host with a large impact parameter (b=1.0760.086+0.112b=1.076^{+0.112}_{-0.086}), being one of the few planetary grazing transits confirmed so far and the first in the Kepler large crop of exoplanets. We estimate that only around 20% of the projected planet disk occults the stellar disk. The relatively large uncertainties in the planet radius are due to the large impact parameter and short duration of the transit. Planets with such an extremely large impact parameter can be used to detect and analyze interesting configurations such as additional perturbing bodies, stellar pulsations, rotation of a non-spherical planet, or polar spot-crossing events. All these scenarios would periodically modify the transit properties (depth, duration, and time of mid-transit), what could be detectable with sufficient accurate photometry. Short-cadence photometric data (at the 1 minute level) would help in the search for these exotic configurations in grazing planetary transits like that of Kepler-447b.Comment: Accepted for publication in A&A. 13 pages, 8 figures, 4 tables. This version replaces an earlier version of the pape

    Evolution equation of quantum tomograms for a driven oscillator in the case of the general linear quantization

    Full text link
    The symlectic quantum tomography for the general linear quantization is introduced. Using the approach based upon the Wigner function techniques the evolution equation of quantum tomograms is derived for a parametric driven oscillator.Comment: 11 page

    Physical properties, starspot activity, orbital obliquity, and transmission spectrum of the Qatar-2 planetary system from multi-colour photometry

    Full text link
    We present seventeen high-precision light curves of five transits of the planet Qatar-2b, obtained from four defocussed 2m-class telescopes. Three of the transits were observed simultaneously in the SDSS griz passbands using the seven-beam GROND imager on the MPG/ESO 2.2-m telescope. A fourth was observed simultaneously in Gunn grz using the CAHA 2.2-m telescope with BUSCA, and in r using the Cassini 1.52-m telescope. Every light curve shows small anomalies due to the passage of the planetary shadow over a cool spot on the surface of the host star. We fit the light curves with the prism+gemc model to obtain the photometric parameters of the system and the position, size and contrast of each spot. We use these photometric parameters and published spectroscopic measurements to obtain the physical properties of the system to high precision, finding a larger radius and lower density for both star and planet than previously thought. By tracking the change in position of one starspot between two transit observations we measure the orbital obliquity of Qatar-2 b to be 4.3 \pm 4.5 degree, strongly indicating an alignment of the stellar spin with the orbit of the planet. We calculate the rotation period and velocity of the cool host star to be 11.4 \pm 0.5 d and 3.28 \pm 0.13 km/s at a colatitude of 74 degree. We assemble the planet's transmission spectrum over the 386-976 nm wavelength range and search for variations of the measured radius of Qatar-2 b as a function of wavelength. Our analysis highlights a possible H2/He Rayleigh scattering in the blue.Comment: 20 pages, 14 figures, to appear in Monthly Notices of the Royal Astronomical Societ

    Quantum Characterization of a Werner-like Mixture

    Full text link
    We introduce a Werner-like mixture [R. F. Werner, Phys. Rev. A {\bf 40}, 4277 (1989)] by considering two correlated but different degrees of freedom, one with discrete variables and the other with continuous variables. We evaluate the mixedness of this state, and its degree of entanglement establishing its usefulness for quantum information processing like quantum teleportation. Then, we provide its tomographic characterization. Finally, we show how such a mixture can be generated and measured in a trapped system like one electron in a Penning trap.Comment: 8 pages ReVTeX, 8 eps figure
    corecore