1,135 research outputs found
Long memory impact of ocean mesoscale temperature anomalies on tropical cyclone size
Mesoscale ocean temperature anomalies modify a tropical cyclone (TC). Through a modeling study we show that, while the maximum wind speed is rapidly restored after the TC passes a warmâ or coldâ (eddy size) sea surface temperature (SST) anomaly, the storm size changes are more significant and persistent. The radius of gale force winds and integrated kinetic energy (IKE) can change by more than 10% per degree and this endures several days after crossing an SST anomaly. These properties have a long memory of the impact from the ocean fluxes and depend on the integrated history of SST exposure. They are found to be directly proportional to the storm total precipitation. Accurate continuous forecast of the SST along the track may therefore be of central importance to improving predictions of size and IKE, while instantaneous local SST near the TC core is more important for the forecast of maximum wind speed
Predictive Information: Status or Alert Information?
Previous research investigating the efficacy of predictive information for detecting and diagnosing aircraft system failures found that subjects like to have predictive information concerning when a parameter would reach an alert range. This research focused on where the predictive information should be located, whether the information should be more closely associated with the parameter information or with the alert information. Each subject saw 3 forms of predictive information: (1) none, (2) a predictive alert message, and (3) predictive information on the status display. Generally, subjects performed better and preferred to have predictive information available although the difference between status and alert predictive information was minimal. Overall, for detection and recalling what happened, status predictive information is best; however for diagnosis, alert predictive information holds a slight edge
Convergence to equilibrium for many particle systems
The goal of this paper is to give a short review of recent results of the
authors concerning classical Hamiltonian many particle systems. We hope that
these results support the new possible formulation of Boltzmann's ergodicity
hypothesis which sounds as follows. For almost all potentials, the minimal
contact with external world, through only one particle of , is sufficient
for ergodicity. But only if this contact has no memory. Also new results for
quantum case are presented
Enhancement of parity and time invariance violation in Radium atom
There are several factors which lead to a huge enhancement of parity and time
invariance violating effects in the Ra atom: very close electronic levels of
opposite parity, the large nuclear charge Z and the collective nature of
T,P-odd nuclear moments. Experiments with Radium may be used to measure it's
nuclear anapole, magnetic quadrupole and Schiff moments. Such measurements
provide information about parity and time invariance violating nuclear forces
and electron-nucleon interactions.Comment: 4 pages, RevTe
Experimental study of Taylor's hypothesis in a turbulent soap film
An experimental study of Taylor's hypothesis in a quasi-two-dimensional
turbulent soap film is presented. A two probe laser Doppler velocimeter enables
a non-intrusive simultaneous measurement of the velocity at spatially separated
points. The breakdown of Taylor's hypothesis is quantified using the cross
correlation between two points displaced in both space and time; correlation is
better than 90% for scales less than the integral scale. A quantitative study
of the decorrelation beyond the integral scale is presented, including an
analysis of the failure of Taylor's hypothesis using techniques from
predictability studies of turbulent flows. Our results are compared with
similar studies of 3D turbulence.Comment: 27 pages, + 19 figure
Scattering induced current in a tight-binding band
International audienceIn the single band tight-binding approximation, we consider the transport properties of an electron in a homogeneous static electric field. We show that repeated interactions of the electron with two-level systems in thermal equilibrium suppress the Bloch oscillations and induce a steady current, the statistical properties of which we study
- âŠ