104 research outputs found

    Differentiation of In Vitro–Modified Human Peripheral Blood Monocytes Into Hepatocyte–like and Pancreatic Islet-like Cells

    Get PDF
    BACKGROUND & AIMS: Adult stem cells provide a promising alternative for the treatment of diabetes mellitus and end-stage liver diseases. We evaluated the differentiation potential of human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells. METHODS: Monocytes were treated with macrophage colony-stimulating factor and interleukin 3 for 6 days, followed by incubation with hepatocyte and pancreatic islet-specific differentiation media. Cells were characterized by flow cytometry, gene-expression analysis, metabolic assays, and transplantation for their state of differentiation and tissue-specific functions. RESULTS: In response to macrophage colony-stimulating factor and interleukin 3, monocytes resumed cell division in a CD115-dependent fashion, which was associated with a down-regulation of the PRDM1 and ICSBP genes. These programmable cells of monocytic origin were capable of differentiating into neohepatocytes, which closely resemble primary human hepatocytes with respect to morphology, expression of hepatocyte markers, and specific metabolic functions. After transplantation into the liver of severe combined immunodeficiency disease/nonobese diabetic mice, neohepatocytes integrated well into the liver tissue and showed a morphology and albumin expression similar to that of primary human hepatocytes transplanted under identical conditions. Programmable cells of monocytic origin-derived pancreatic neoislets expressed beta cell-specific transcription factors, secreted insulin and C peptide in a glucose-dependent manner, and normalized blood glucose levels when xenotransplanted into immunocompetent, streptozotocin-treated diabetic mice. Programmable cells of monocytic origin retained monocytic characteristics, notably CD14 expression, a monocyte-specific methylation pattern of the CD115 gene, and expression of the transcription factor PU.1. CONCLUSIONS: The ability to reprogram, expand, and differentiate peripheral blood monocytes in large quantities opens the real possibility of the clinical application of programmable cells of monocytic origin in tissue repair and organ regeneration

    Synthesis and Characterization of a Novel Biocompatible Alloy, ti-nb-zr-ta-sn

    Full text link
    Many current-generation biomedical implants are fabricated from the Ti-6Al-4V alloy because it has many attractive properties, such as low density and biocompatibility. However, the elastic modulus of this alloy is much larger than that of the surrounding bone, leading to bone resorption and, eventually, implant failure. In the present study, we synthesized and performed a detailed analysis of a novel low elastic modulus Ti-based alloy (Ti-28Nb-5Zr-2Ta-2Sn (TNZTS alloy)) using a variety of methods, including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and tensile test. Additionally, the in vitro biocompatibility of the TNZTS alloy was evaluated using SCP-1, SaOs-2, and THP-1 cell lines and primary human osteoblasts. Compared to Ti-6Al-4V, the elastic modulus of TNZTS alloy was significantly lower, while measures of its in vitro biocompatibility are comparable. O2 plasma treatment of the surface of the alloy significantly increased its hydrophilicity and, hence, its in vitro biocompatibility. TNZTS alloy specimens did not induce the release of cytokines by macrophages, indicating that such scaffolds would not trigger inflammatory responses. The present results suggest that the TNZTS alloy may have potential as an alternative to Ti-6Al-4V. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Funding: The experimental work was funded by the State Assignment (Russian Federation, Grant No. 0836-2020-0020) and DAAD together with the Ministry of Education and Science of the Russian Federation within the Michael Lomonosov Program (project No. 57447934)

    Verbesserung des Outcomes bei proximaler Fermurfraktur im Alter durch Immunonutrition

    No full text

    Meta-stability of the hemifusion intermediate induced by glycosylphosphatidylinositol-anchored influenza hemagglutinin.

    Get PDF
    Fusion between influenza virus and target membranes is mediated by the viral glycoprotein hemagglutinin (HA). Replacement of the transmembrane domain of HA with a glycosylphosphatidylinositol (GPI) membrane anchor allows lipid mixing but not the establishment of cytoplasmic continuity. This observation led to the proposal that the fusion mechanism passes through an intermediate stage corresponding to hemifusion between outer monolayers. We have used confocal fluorescence microscopy to study the movement of probes for specific bilayer leaflets of erythrocytes fusing with HA-expressing cells. N-Rh-PE and NBD-PC were used for specific labeling of the outer and inner membrane leaflet, respectively. In the case of GPI-HA-induced fusion, different behaviors of lipid transfer were observed, which include 1) exclusive movement of N-Rh-PE (hemifusion), 2) preferential movement of N-Rh-PE relative to NBD-PC, and 3) equal movement of both lipid analogs. The relative population of these intermediate states was dependent on the time after application of a low pH trigger for fusion. At early time points, hemifusion was more common and full redistribution of both bilayers was rare, whereas later full redistribution of both probes was frequently observed. In contrast to wild-type HA, the latter was not accompanied by mixing of the cytoplasmic marker Lucifer Yellow. We conclude that 1) the GPI-HA-mediated hemifusion intermediate is meta-stable and 2) expansion of an aqueous fusion pore requires the transmembrane and/or cytoplasmic domain of HA

    Smoking negatively affects hematoma formation as the first step of fracture healing

    No full text

    Genistein shows beneficial influence on metabolic and signal pathways in an in vitro hepatic steatosis model

    No full text
    corecore