418 research outputs found

    Diclofenac sorption from synthetic water: Kinetic and thermodynamic analysis

    Get PDF
    This work investigated diclofenac sorption on 0.5g L-1 activated carbon in a range of temperature (288-318K) and of initial sorbate concentration (24-218mgL-1). Thermodynamic modelling was carried out with the Langmuir isotherm. For kinetic modelling we compared the so-called Diffusion-Controlled Langmuir Kinetics (DCLK) and the pseudo-second order (PSO) model. The maximum sorption capacity of the sorbent, equal to 180mgg-1, was independent of temperature. Experimental data fitted well with both kinetic models, yet the DCLK model was found to be more informative about the mechanism of the process. Kinetic parameters (α, ÎČ) increased with the temperature, with α value rising from 5×10-5 to 20×10-5 L mg-1min-0.5, and ÎČ value rising from 3×10-6 to 20×10-6 L mg-1min-1 in the temperature range investigated

    Predicting the effects of capping contaminated sediments via numerical simulations

    Get PDF
    Contaminated sediments are one of the key risks to human health and the environment, due to high concentrations of many types of substances contained in them and their direct contact with the aquatic fauna. This contributes to fish consumption advisories and limits the uses of many water bodies. In this study, an in situ capping (ISC) is considered as a potential remedy to minimise the exposure of aquatic ecosystems to sediment contaminants and a valid alternative to ex situ remediation options, by reducing contaminant fluxes to the upper water. Numerical design simulations, taking into account a biosorptive sediment cap and comparing different adsorptive characteristics of sediments, are proposed. As a case study, polychlorinated biphenyls contaminated sediments of Lake Hartwell, an artificial lake located in South Carolina, USA, were considered. A numerical predictive model of concentrations in a multilayered bed sediment and overlying water was developed in order to evaluate the long-term effectiveness of ISC of different thicknesses. Results showed that, for the case study, a minimum 20 cm cap allows to reduce the contaminant flux to the overlying water through reaction of the contaminants with the capping matrix, by highlighting how sediment biosorptive characteristics can influence the cap design

    An innovative in-situ DRAINage system for advanced groundwater reactive TREATment (in-DRAIN-TREAT)

    Get PDF
    The removal of groundwater contamination is a complex process due to the hydro-geochemical characteristics of the specific site, related maintenance and the possible presence of several types of pollutants, both organic and inorganic. In recent decades, there has been an increasing drive towards more sustainable treatment for contaminated groundwater as opposed to “intensive” treatments, i.e. with high requirements for onsite infrastructure, energy and resource use. In this study, a new remediation technology is proposed, combining the use of advanced drainage systems with adsorption processes, termed “In-situ reactive DRAINage system for groundwater TREATment” (In-DRAIN-TREAT). By taking advantage of the groundwater natural gradient, In-DRAIN-TREAT collects the contaminated groundwater via a drainage system and treats the polluted water directly into an active cell located downstream, avoiding external energy inputs. Preliminary results indicate the applicability and high efficiency of In-DRAIN-TREAT when compared with a permeable reactive barrier (PRB). In-DRAIN-TREAT is applied to remediate a theoretical aquifer with low permeability, contaminated by a 13 m wide hexavalent chromium (CrVI) plume. This is achieved in less than a year, via a drain DN500, 32 m long, a 30 m3 treatment cell filled with activated carbon and no energy consumption. A comparison with permeable barriers also shows a preliminary 63% volume reduction, with a related 10% decrease of remediation costs

    An innovative application of super-paramagnetic iron oxide nanoparticles for magnetic separation

    Get PDF
    © 2017, AIDIC Servizi S.r.l. In the last decades, iron oxide nanoparticle application has taken root in several technological fields, such as magnetic separation of biomolecules, biosensors, bio-fuel production, nano-devices and nano-adsorption. Various approaches can be found for the magnetic nanoparticle manufacturing. Among them a new technology to manufacture core-cell super-paramagnetic iron oxide nanoparticles (SPIONs), based on a vapour composition using single ion precursors, like cyclodextrines, has been recently developed. In this paper, we present the synthesis of functionalized SPIONs as well as the modelling for an innovative application of this magnetic nanotechnology. It consists on the use of SPIONs to trap target organic or inorganic molecules in a continuous-flow apparatus. SPIONs with proper ligands are immobilized on a magnetic surface. On that surface, the solution containing target molecules is circulated. We modelled the magnetic properties of the magnetic surface and SPIONs as well as the velocity of liquid needed in order to avoid removal of nanoparticles by the solution flow

    Experimental and simulation study of the restoration of a thallium (I)-contaminated aquifer by Permeable Adsorptive Barriers (PABs)

    Get PDF
    Permeable Adsorptive Barriers (PABs), filled with a commercial activated carbon, are tested as a technique for the remediation of a thallium (I)-contaminated aquifer located in the south of Italy. Thallium adsorption capacity of the activated carbon is experimentally determined through dedicated laboratory tests, allowing to obtain the main modelling parameters to describe the adsorption phenomena within the barrier. A 2D numerical model, solved by using a finite element approach via COMSOL Multi-physicsÂź, is used to simulate the contaminant transport within the aquifer and for the PAB design. Investigations are carried out on an innovative barrier configuration, called Discontinuous Permeable Adsorptive Barrier (PAB-D). In addition, an optimization procedure is followed to determine the optimum PAB-D parameters, and to evaluate the total costs of the intervention. A PAB-D made by an array of wells having a diameter of 1.5 m and spaced at a distance of 4 m from each other, is shown to be the most cost-effective of those tested, and ensures the aquifer restoration within 80 years. The simulation outcomes demonstrate that the designed PAB-D is an effective tool for the remediation of the aquifer under analysis, since the contaminant concentration downstream of the barrier is below the thallium regulatory limit for groundwater, also accounting for possible desorption phenomena. Finally, the best PAB-D configuration is compared with a continuous barrier (PAB-C), resulting in a 32% saving of adsorbing material volume, and 36% of the overall costs for the PAB-D
    • 

    corecore