
Contents lists available at ScienceDirect

Journal of Environmental Chemical Engineering

journal homepage: www.elsevier.com/locate/jece

Diclofenac sorption from synthetic water: Kinetic and thermodynamic
analysis

Stefano Salvestrinia,b, Angelo Fentic, Simeone Chianeseb,c,*, Pasquale Iovinoa,b, Dino Musmarrab,c

a Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, via Vivaldi 43, 81100 Caserta, Italy
b Environmental Technologies, University Spin Off of University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy
c Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa CE, Italy

A R T I C L E I N F O

Editor: GL Dotto

Keywords:
Diclofenac
Sorption
Kinetics
Thermodynamics
Emerging and refractory pollutants
Exothermic sorption

A B S T R A C T

This work investigated diclofenac sorption on 0.5 g L−1 activated carbon in a range of temperature (288−318 K)
and of initial sorbate concentration (24−218mg L−1). Thermodynamic modelling was carried out with the
Langmuir isotherm. For kinetic modelling we compared the so-called Diffusion-Controlled Langmuir Kinetics
(DCLK) and the pseudo-second order (PSO) model. The maximum sorption capacity of the sorbent, equal to
180mg g−1, was independent of temperature. Experimental data fitted well with both kinetic models, yet the
DCLK model was found to be more informative about the mechanism of the process. Kinetic parameters (α, β)
increased with the temperature, with α value rising from 5×10−5 to 20×10−5 L mg−1 min−0.5, and β value
rising from 3×10−6 to 20×10−6 L mg−1 min−1 in the temperature range investigated.

1. Introduction

More than 200 pharmaceutically active compounds (PhACs) of
human origin, such as non-steroidal anti-inflammatory drugs, anti-
biotics and analgesics, are a common occurrence in environmental
comparts including surface water, groundwater, sewage and soil [1,2].
The current understanding of long-term effects of these compounds on
human health and ecosystem functionality is still incomplete, yet, their
potential toxicity for freshwater aquatic organisms has been clearly
established [3]. Moreover, reports of PhACs impairing the metabolic
activity of soil microbial community have raised concern about ecolo-
gical damage from the use of water from sewage treatment plants for
irrigation and of biosolids and sludges for soil amendment [4].

Diclofenac (DCF), a non-steroidal anti-inflammatory drug of large
use for therapy of inflammatory syndromes and painful conditions, is
frequently detected in the environment [5]. The presence of DCF, and of
its metabolite forms, in aquatic and soil comparts can be linked to a
diversity of sources, such as domestic discharge or wastes from hospi-
tals and pharmaceutical industries [5–7]. DCF toxicity for fish and in-
sect species has been extensively investigated. It has been found, for
example, that DCF caused vitellogenin expression in the males of me-
daka fish (Oryzias latipes) [8], and reduced the emergence rate of adults
in the midge Chironomus riparius [9]. DCF was included in the Drinking
Water Contaminant Candidate List and classified as class I, i.e. high-
priority pharmaceutical products according to the Global Water

Research Coalition [10]. DCF is also considered as an emerging con-
taminant and listed in the Watch List of EU Decision 2015/495 [11].

The global occurrence of diclofenac in a diversity of water bodies
including surface water, seawater, groundwater, drinking water, and
effluents from municipal wastewater treatment plants (MWWTP), was
recently reviewed [5]. This study points to DCF contamination of sur-
face water and seawater at concentrations in the range (order of mag-
nitude) 1 ng L−1 - 10 μg L−1, with the highest values of 57.16 μg L−1

and 10.2 μg L−1, respectively. Diclofenac was detected in groundwater
at concentrations in the range (order of magnitude) 10 ng L−1 -
10 μg L−1, with a peak value of 13.48 μg L−1. Drinking water showed a
concentration of DCF in the range (order of magnitude) 1 ng L−1 - 10 ng
L−1, with the highest value of 56 ng L−1. Diclofenac concentration in
effluents from municipal wastewater treatment plants varied in the
range (order of magnitude) 10 ng L−1 - 10 μg L−1, with a peak value of
19 μg L−1. These values clearly point to a low removal efficiency of
conventional wastewater treatment processes for diclofenac, probably
reflecting its resilience to biological depuration processes [10,12]. As a
matter of fact, traditional treatment systems adopted in MWWTPs may
increase DFC concentrations in the effluent [5,13].

Because of the above difficulties, the removal of DFC and other si-
milarly refractory molecules requires the application of tertiary treat-
ment methods, such as sorption [14–17] and Advanced Oxidation
Processes (AOPs) [18–21]. AOPs, including photocatalysis with TiO2

[22–24], photolysis [25–27], ozonation [28] and Fenton [29], showed
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great potentiality in terms of concentration reduction, although the
formation of potential harmful by-products has to be taken into account
when oxidation techniques are used [30]. An alternative approach that
does not involve harmful by-product generation, is the application of
sorption techniques. A study of diclofenac removal from aqueous so-
lution by sorption on lignite activated coke reported a maximum
sorption capacity of 224mg g−1 (Langmuir isotherm, T=25 °C;
pH=6.5) [31]. Magnetic amine-functionalized chitosan displayed a
maximum sorption capacity of 469.48mg g−1 (Langmuir isotherm, T
=30 °C, pH=4.5) [32]. An oxidized activated carbon displayed a
maximum sorption capacity of 490mg g−1 (Langmuir isotherm,
T= 25 °C; pH=5.5) has been reported for an oxidized activated
carbon [33]. In all above-mentioned studies, the sorption process fol-
lowed the pseudo-second-order kinetic model. Lonappan et al. [34]
developed biochar-based green functional materials for diclofenac re-
moval; starting from an initial concentration of DFC of 500 μg L−1, they
found a removal efficiency of 80 % and 84 % for pinewood biochar and
almond shell biochar, respectively.

Diclofenac sorption can be strongly influenced by temperature [35].
An increase of the temperature is expected to cause an increase of
sorption rate because of enhanced sorbate diffusion [36], although is
some cases the opposite occurs [37]. On the other hand, the maximum
sorption capacity can either increase or decrease depending on whether
the sorption process is endo- or exothermic [38,39]. Therefore, asses-
sing the effect of temperature on the kinetics and the thermodynamics
of sorption is a crucial point for evaluating the efficiency of the process.

Here we report a study of the sorption of diclofenac from synthetic
water onto 0.5 g L−1 commercial activated carbon in a range of tem-
perature (288−318 K) and initial concentration of free sorbate
(24−218mg L–1). Thermodynamic modelling was carried out with the
Langmuir isotherm. Kinetic modelling was performed by comparing a
hybrid kinetic model based on Langmuir surface reaction theory and
Waite’s theory of diffusion, known as Diffusion-Controlled Langmuir
Kinetics (DCLK) [40], and the pseudo-second order (PSO) model [41].
The main thermodynamic parameters (standard change in Gibbs free
energy, enthalpy and entropy) and the kinetic parameters were as-
sessed.

2. Materials and methods

2.1. Materials

Sorption experiments were carried out by using a commercial ac-
tivated carbon, Filtrasorb 400 (F400), from Calgon Carbon Corporation.
This sorbent material is highly microporous, with a micropore volume
equal to 0.31 cm3 g−1 and a BET surface area of about 1000m2 g−1

[35]. A detailed description of its physical and chemical properties,
including pore size distribution, acidic/basic surface functional groups,
superficial chemical analysis and proximate analysis, has been reported
elsewhere [42,43].

A diclofenac sodium salt (Na-DCF) of analytical grade with purity
≥98.5 % (CAS: 15307−79-6; Sigma-Aldrich, UK) was used to prepare
experimental solutions in MilliQ water without further purification.

2.2. Determination of the point of zero charge

The zero charge pH (pHpzc) of the sorbent was determined by pH
titration [44,45]. Forty mL aliquots of 0.01M NaCl solution were
placed in 50mL test tubes and the pH was adjusted to a value between 2
and 11 by adding few drops of 0.1 M HCl or 0.1 M NaOH solution.
Twenty milligrams of F400 were added to each solution, and after 48 h
the final pH (pHfinal) was measured and plotted against the initial pH
(pHinitial). The pH at which the curve pHfinal vs pHinitial crossed the line
pHfinal = pHinitial gave the pHpzc of F400.

2.3. Sorption experiments

Before use, the F400 was washed with milliQ water and dried in
oven at 65 °C overnight, in order to remove impurities. The washing
procedure was repeated three times.

All sorption experiments were carried out by batch method in pure
water. Preliminary experiments in the presence of NaCl (10mM, 50mM
or 100mM) revealed that the ionic strength had a negligible effect on
sorption. Five mg of F400 were transferred to 10mL of DCF aqueous
solution (24−218mg L–1) in 15mL test tubes. The samples were in-
cubated at different temperatures (15, 25, 35 and 45 °C) in a Benchmark
Scientific MyTemp™ Mini Digital Incubator, under agitation speed of
30 rpm, for 120 h on a Benchmark Scientific Mini Nutating Rocker. At
selected intervals, small aliquots of surnatant were analysed by UV–vis
spectroscopy on a Perkin Elmer, Lambda 40, spectrometer, optical
path=0.1−1 cm. DCF concentration was assessed at 275 nm, fol-
lowing a previous method [46] and using the molar extinction coeffi-
cient of 0.0386 L cm−1 mg−1.

The amount of DCF sorbed per mass of sorbent (q, expressed as mg
g−1) was determined from mass balance analysis:

= −q C C
X

0
(1)

where C0 and C represent the initial concentration and the concentra-
tion at any time t of DCF in the liquid phase, respectively, whereas X is
the sorbent dosage, that is the mass of sorbent to the liquid volume ratio
(g L−1).

3. Results and discussion

3.1. Point of zero charge

DCF is a weak electrolyte characterized by an acid dissociation
constant (pKa) of 4.22 [47], with anionic and molecular forms coex-
isting in water solution in relative amounts depending on pH. At
pH < 4.22, DCF mainly exists in the molecular form, at pH > 4.22
DCF the ionic form predominates.

The zero-charge pH of F400 is 6.5 (Fig. 1). Under the experimental
conditions used (pH=6.8 ± 0.2, either in the presence or in the ab-
sence of DCF), the sorbent surface is negatively charged and DCF is
largely present in the anionic form, thus an electrostatic repulsion

Fig. 1. Plot of the point of zero charge for F400.
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occurs between DCF and the sorbent surface [48]. This also indicates
that DCF sorption by F400 does not involve electrostatic attraction.
Several other mechanisms are possible, such as π-π stacking, hydrogen
bonding, hydrophobic–hydrophilic interactions and van der Waals
forces [46,48–51].

3.2. Sorption thermodynamics

Fig. 2 shows the sorption isotherms of DCF onto F400 at different
temperatures. The curves were obtained by least squares fitting of the
Langmuir isotherm model ((Eq.2)) to the experimental data:

=
+

q
q K C

K C1e
m L e

L e (2)

where qe and Ce are the amount of DCF sorbed and the concentration of
DCF in solution, respectively, at the equilibrium.

The fitting procedure was carried out by setting qm as a shared
parameter (as we have assumed that the availability of sorption sites
does not vary with temperature). Numerical results of this calculation
are reported in Table 1. The low error associated to the estimated value
of qm, of 180mg g−1 suggests that the maximum sorption capacity of
the sorbent is independent of temperature.

Table 2 is a survey of DCF sorption properties of different types of
activated carbon, including maximum sorption capacities and operative
conditions.

As shown, the values reported in the present manuscript are com-
parable with those reported in literature.

Table 1 also shows that the Langmuir equilibrium constant KL has a
decreasing trend with temperature. In order to obtain information on
the thermodynamic parameters of sorption, namely the standard
change in Gibbs energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°), the
following thermodynamic relationships were used [60]:

° = −G RTlnKΔ L (3)

° = ° − °G H T SΔ Δ Δ (4)

By combining Eqs. (3) and (4), one gets

= − ° + °lnK H
R T

S
R

Δ 1 Δ
L (5)

Therefore, under the assumption that both ΔH° and ΔS° do not vary
appreciably with temperature, a plot of lnKL vs 1/T (van’t Hoff plot)
gives a straight line whose slope and intercept with y-axis, respectively,
permit the determination of ΔH° and ΔS° (Fig. 3).

The numerical values obtained from the van’t Hoff plot for ΔH° and
ΔS° are −29 kJ mol−1 and −122 J K mol−1, respectively (see also
Table 1). The negative sign of ΔH° indicates that the sorption of DCF
onto F400 is an exothermic process. A similar effect of temperature on
the sorption of DCF was observed by De Oliveira et al. [61] using or-
ganoclays as sorbent materials in the temperature range 5−50 °C at pH
6.5, and by Lins et al. [62] using MgAl/LDH-activated carbon compo-
site in the temperature range 30−60 °C at pH 5.5. In contrast, Sur-
iyanon et al. [63] investigated the effect of temperature
(T=15−40 °C; pH 7) on DCF sorption from water solution by pow-
dered activated carbon, and found that the sorption process was en-
dothermic. Similar results were found by Tam et al. [64], who in-
vestigated the removal of DCF from aqueous solution by potassium
ferrate-activated porous graphitic biochar in the temperature range
25−45 °C at pH=6.5.

Table 1 shows values of ΔG°>0. Obviously, in no way does this
result imply that the sorption process is not spontaneous. The sign of
ΔG° must be not confused with that of ΔG, as often erroneously done in
the literature [63]. The sign of ΔG° may merely depend on the selected
standard state [65–67]. In our case, for example, a ΔG°<0 would have
been obtained by expressing solute concentration as g L−1 instead of
mg L−1.

3.3. Effect of the initial aqueous concentration of DCF on the sorption
kinetics

Fig. 4 shows the results of sorption experiments of DCF onto F400 at
different initial concentrations of sorbate. A rapid uptake of DCF is
observed in the first hours of the experiments, followed by a much
slower phase leading to the equilibrium in about five days.

The data presented in Fig. 4 were preliminary analysed by the
pseudo-second order (PSO) model [41], which is widely used for de-
scribing sorption kinetics in liquid/solid systems [68–73]. The PSO
model is generally applied in its non-linear (hyperbolic) form (Eq.(6))
or linearized from (Eq.(7)):

=
+

q
q k t

q k t1
e PSO

e PSO

2

(6)

= +t
q

t
q q k

1

e e PSO
2 (7)

Here kPSO is the observed kinetic rate constant of the PSO model. In this
work, the non-linear form of the PSO model (Eq.(6) was preferred for
modelling the experimental data, as it provides a more correct estimate
of the model parameters [74–76]. The results of the fitting procedure
are displayed in Fig. S1 and in Table 3.

The PSO model described fairly well the kinetic profiles, suggesting
that the rate of DCF sorption be proportional to the square of the

Fig. 2. Sorption isotherms of DCF onto F400; the curves in figure represent the
isotherms predicted by the Langmuir model setting the maximum sorption
capacity, qm, as a shared fitting parameter.

Table 1
Thermodynamic parameters for DCF sorption onto F400 as determined by the
Langmuir isotherm model and by van’t Hoff plot.

T (K) qma (mg g−1) KL × 102 (L
mg−1)

ΔG°b(kJ
mol−1)

ΔH°b (kJ
mol−1)

ΔS°b (J
K−1 mol−1)

288.15 180 ± 10 8.7 ± 3.0 5.8 −29 ± 8 −122 ± 28
298.15 4.7 ± 0.9 7.6
308.15 5.0 ± 0.8 7.7
318.15 2.2 ± 0.5 10.1

a Calculated by the Langmuir isotherm model using global fitting procedure.
b Selected standard states: 1 mg L−1 for the solute; 1mg g−1 for the solid

phase.
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distance from equilibrium, qe – q [72]. Regression analysis gave a re-
liable estimate (low standard error) of kPSO, whose value generally
decreased with increasing C0.

Although the fitting procedure was satisfactory, it should be noted
that the PSO equation is a purely descriptive (empirical) model, hence
the values of kPSO at different C0 are not interrelated and do not provide

Table 2
DCF sorption properties of different types of activated carbon.

Sorbent
material

Operative conditions Diclofenac equilibrium
concentration (Ce)

Equilibrium sorption
capacity qe(Ce)

Max removal
efficiency

Reference

ACF ACF dosage =0.1 g L−1; pH=6.5; temperature= 25 °C 0.001 mM 0.15mmol g−1 – [52]
0.015 mM 0.95mmol g−1

GAC GAC dosage=N.A.; pH=7.98; temperature =30 °C 0.001 mM 0.08mmol g−1 – [53]
0.25 mM 0.21mmol g−1

PAC PAC dosage=N.A.; pH=7.98; temperature =30 °C 0.001 mM 0.15mmol g−1

0.20 mM 0.44mmol g−1

AC AC amount= 5mg; Volume =50mL; pH=5.4;
temperature= 25 °C

1 ppm 3.3 mg g−1 – [54]
90 ppm 63mg g−1

AC AC amount= 5mg; Volume=25mL; pH=5.5;
temperature= 25 °C

18 ppm 30mg g−1 – [33]
88 ppm 65mg g−1

PAC PAC amount=0.05−0.25 g; Volume=50−500mL;
pH=6; temperature= 25 °C

10mg L−1 100mg g−1 – [55]
242mg L−1 323mg g−1

GAC GAC amount=0.05−0.25 g; Volume=50−500mL;
pH=6; temperature= 25 °C

0.5mg L−1 10mg g−1 63%
168mg L−1 49.5 mg g−1

PAC PAC dosage= 10mg L−1; pH=8; temperature =20 °C 0.5 μg L−1a,d 1 μg g−1° 97 % [56]
8 μg L−1a,d 4.2 μg g−1°
28 μg L−1b,d 0.5 μg g−1° 27 %
42 μg L−1b,d 1 μg g−1°

PAC PAC dosage= 10–20mg L−1; temperature =20 °C 1197 ng L−1b N.A. 69 % [57]
GAC GAC dosage= 30–100mg L−1 287 ng L−1b 7.5 μg g−1c 93 % [58]
PAC PAC dosage= 30–100mg L−1 7.7 μg g−1c 95 %
PAC PAC dosage= 50mg L−1 0.07 μg L−1b N.A. 30 % [59]
GAC GAC dosage =0.5 g L−1; pH=6.8; temperature=25 °C 5mg L−1 35mg g−1 81 % This study

100mg L−1 150mg g−1

ACF=activated carbon fiber.
GAC=granular activated carbon.
PAC=powdered activated carbon.
AC=activated carbon.
N.R. = not reported.
N.A. = not available.

a Initial concentration in simulated municipal wastewater.
b Initial concentration in real municipal wastewater.
c Specific Sorption Capacity.
d Sorption pseudo-isotherms after 30min of contact.

Fig. 3. van’t Hoff plot for the sorption of DCF onto F400.

Fig. 4. Kinetic profiles of DCF sorption onto F400 at different initial solute
concentrations; T=25 °C, sorbent dosage =0.5 g L−1.
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any information about the mechanism of the sorption process. To this
end, alternative models need to be used.

In order to correctly interpret the data in figure and to gain insight
on the mechanism of DCF sorption onto F400, it is important to take
into account the possible effect of the microporosity of the sorbent
material on the rate of the process. The rate of sorption is expected to be
slowed down by diffusion phenomena because active sorbent sites
mostly lie inside the sorbent particles, so that sorbable molecules have
to diffuse through the pores of the sorbent, a process commonly known
as intraparticle diffusion. A convenient method to assess whether the
rate of sorption of DCF is affected by intraparticle diffusion, is to plot
the sorbed amount q as a function of the square root of time. According
to Crank diffusion theory [77], the linearity of this plot at an early stage
of reaction is indicative of a sorption process governed by diffusion.

The plots of q vs √t for the sorption of DCF onto F400 are reported in
Fig. 5. As can be seen, an excellent linear correlation between the
sorbed amount and √t is obtained for small values of time, thus pro-
viding evidence that diffusion is the major driver of DCF sorption ki-
netics.

Taking into account the likely role of intraparticle diffusion, DCF
sorption by F400 may be described as the sum of two reversible steps:

+ ⇄ ⋯ ⇄ −−DCF i DCF i DCF ik
k

k
k

D
D

d
a (8)

Here, kD and k−D are the diffusion rate constants for the formation and
dissociation of the encounter complex (DCF···i) between DCF in solution
and the sorption site i, and ka and kd are the microscopic kinetic rate
constants for solute sorption and desorption, respectively.

The overall (net) rate of sorption, dθ/dt, for the reaction in Eq.(8)
can be written as:

⎜ ⎟= − = ⎛
⎝

− ⎞
⎠

dθ
dt

v v v v
v

1f r f
r

f (9)

Here θ is the surface coverage fraction, i.e. the ratio between the sor-
bent amount q at any time and the maximum sorption level qm; vf and vr
are the overall forward and reverse rate of the process.

Assuming that the surface reaction is described by the Langmuir
kinetics [78], Eq.(9) can be re-written as

⎜ ⎟= ⎛
⎝

−
−

⎞
⎠

dθ
dt

v θ
C θ K

1
(1 )

1
f

L (10)

where KL is the Langmuir equilibrium constant.
Moreover, assuming that the overall rate of the process (Eq.(8)) is

entirely controlled by diffusion, and considering that sorption is a bi-
molecular reaction, we may express the overall forward rate vf of Eq.
(10), in line with Waite’s theory [40,79,80], as:

= ⎛
⎝

+ ⎞
⎠

−v α
t

β C θ(1 )f
(11)

=α N
M

r πD4 A

w
0
2

(12)

=β N
M

r πD4 A

w
0 (13)

Here NA and Mw are the Avogadro number and the molecular weight of
DCF, respectively; r0 is the separation distance between DCF and any

Table 3
PSO and DCLK model parameters for DCF sorption onto F400 at 25 °C; sorbent dosage =0.5 g L−1.

PSO model parameters

C0 (mg
L−1)

qea (mg g−1) kPSO × 105 (g
mg−1 min−1)

Adj. R2 RMSE AIC

62 68 ± 8 5.1 ± 0.5 0.99 4.8 317
99 125 ± 15 2.0 ± 0.1
137 145 ± 17 1.7 ± 0.1
168 138 ± 17 2.0 ± 0.1
218 156 ± 19 1.5 ± 0.1

DCLK model parameters

C0 (mg L−1) qea (mg g−1) qmb (mg g−1) αc × 105 (L mg−1 min-0.5) βc × 106 (L mg−1 min−1) Adj. R2 RMSE AIC

62 68 ± 8 180 ± 10 4.4 ± 0.5 4.6 ± 0.5 0.97 7.5 399
99 125 ± 15
137 145 ± 17
168 138 ± 17
218 156 ± 19

a Calculated from the plateau level of the kinetic profiles reported in Fig. 4.
b Calculated by the Langmuir isotherm model using global fitting procedure.
c Calculated by the DCLK model using global fitting procedure.

Fig. 5. Dependence of the sorbed amount q on the square root of time. The
curves represent least squares lines forced through the origin.
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site i suitable for sorption, and D is the effective diffusion coefficient of
the DCF, i.e. the molecular diffusion coefficient corrected for the por-
osity of the sorbent.

Substituting Eq.(11) into Eq.(10) and integrating yields to:

=
− − +

− − +
q q

exp X q q α t βt
exp X q q α t βt

1 [ ( )(2 )]
1 [ ( )(2 )]e

e
q
q e

2

2
e

2 (14)

=q
q C
q X
m

e
2

0

(15)

Eq.(14) represents a Diffusion-Controlled Langmuir Kinetics (here-
after referred to as DCLK) based on Waite’s theory. Details on DCLK
model derivation can be found in a previous report [40].

Eq.(14) was used to fit the data of Fig. 4. Notably, Eq.(14) contains
four fitting parameters, namely the sorbed amount at equilibrium qe,
the maximum sorption capacity qm, and the two kinetic parameters α
and β. Of these, qm, α and β are parameters common to all kinetic runs
whereas qe varies with experimental conditions (C0 and X). Given that,
reliable values of the unknown parameters can be obtained by per-
forming a global fitting analysis of experimental data in which qm, α and
β are set as shared parameters, whilst qe is calculated individually for
each experimental data set. In order to simplify the fitting procedure,
the number of adjustable parameters can be significantly reduced by
using the values of qe and qm obtained from the plateau levels in Fig. 4
and from the Langmuir isotherm, respectively.

The results of the fitting procedure for the kinetic data reported in
Fig. 4 are displayed in Fig. 6 and Table 2.

As can be seen from the figure, the DCLK model describes fairly well
all the kinetic data set, with the exception of the set associated with the
lowest solute concentration (24mg L−1), which was therefore excluded
from global fitting calculation. The estimated values of α and β (see
Table 2) are 4.4×10-5 L mg−1 min-0.5 and 4.6×10-6 L mg−1 min−1,
respectively. The DCLK model and the PSO model were compared for
goodness of fit using adjusted coefficient of determination (adj. R2),
root mean square error (RMSE) and Akaike's information criterion
(AIC) [81]. The fitting results using the DCLK model are reasonably
good (adj. R2= 0.97), although not as good as that obtained with the
PSO model. Indeed, as can be seen from Table 2, the PSO model has
higher adj. R2, and lower RMSE and AIC values. Obviously, much better
fitting results with the DCLK model could have been achieved by de-
creasing the constraints on the adjustable parameters, i.e. without
parameters sharing (see Fig.S2), as in the case of the PSO model; the
parameters so obtained, however, would have little bearing on the

understanding of the sorption mechanism.
It is worth noting that in spite of lower fitting performance vs. the

PSO model, the DCLK model has a great practical advantage over this
and other empirical models. As a matter of fact, besides providing a
description of actual experimental data, the DCLK model allows one to
predict the kinetic behaviour of the sorbate (under varying operative
conditions such as C0, X and, as we will see below, temperature) on the
basis of the estimated parameters related to the sorbate/sorbent inter-
action (sorbate diffusivity and sorbate/sorbent affinity).

3.4. Effect of temperature on the sorption kinetics

Fig. 7 shows the kinetic profiles of the sorption experiments at
different temperatures. The data clearly show that the rate of sorption
increases with temperature. In contrast, it is interesting to note a ne-
gative effect of temperature on the sorbed amount at equilibrium
(plateau level of the kinetic data set). This latter finding, in line with the
results of Fig. 2, reflects the exothermic nature of the process.

The curves in Fig. 7 represent the results of data fitting with the
DCLK model (Eq.(14)). In order to correctly interpret the effect of
temperature on the sorption rate, α and β were not set as shared
parameters during the fitting procedure. The DCLK model adequately
described the experimental data. The estimated values of α and β are
reported in Table 4.

Both α and β values increase with temperature and, more interest-
ingly, the increment of α is less than that of β, that is the β/α ratio
increases with temperature. This behaviour appears to be fully con-
sistent with the physical meaning of α and β parameters (see Eqs.(12)
and (13)), most likely reflecting the dependence of diffusion rate on
temperature:

=
β
α

πD
r0 (16)

The role of diffusion in the sorption kinetics can be evaluated from
the magnitude of the activation energy (Ea) obtainable from the
Arrhenius law [82]:

= −D D e
E
RT0

a
(17)

Fig. 6. Global fitting analysis of DCF sorption kinetic data at T= 25 °C setting α
and β as shared parameters; sorbent dosage =0.5 g L−1.

Fig. 7. Temperature effect on DCF sorption kinetics; C0=140mg L−1, sorbent
dosage =0.5 g L−1. The curves in figure represent the kinetics predicted by the
DCLK model.
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where D0 is the Arrhenius pre-exponential factor, a temperature-in-
dependent parameter.

According to Eq.(17), a plot of lnD vs 1/T should produce a straight
line with slope equal to –Ea/R. Because β2/α2 is proportional to D, the
β2/α2 ratio can be used in place of D in the Arrhenius plot to determine
the slope of the line. The plot of lnβ2/α2 vs 1/T for DCF sorption onto
F400 (Fig. 8) shows a satisfying linear correlation (R2=0.99) between
lnβ2/α2 and 1/T. The activation energy determined from the slope of
the line is Ea=26 ± 8 kJ mol−1. Within the experimental error, this
value is consistent with values expected for diffusion-controlled sorp-
tion processes (Ea ≤ 20 kJ mol−1 [83]), thus reinforcing the conclusion
that the DCLK model is the best choice for describing the sorption ki-
netics of DCF onto F400.

4. Conclusions

This study was mainly focused on kinetic and thermodynamic
modelling of diclofenac sorption by F400. The Langmuir isotherm is a
satisfactory thermodynamic model. The Diffusion-Controlled Langmuir
Kinetics, a hybrid kinetic model based on the Langmuir surface reaction
theory and on Waite’s theory of diffusion, was found to be preferable to
the pseudo-second order model for describing the kinetics of the pro-
cess, because experimental evidence suggested that DCF sorption was
controlled by intraparticle diffusion. Investigations were carried out by
varying temperature (15−45 °C) and initial concentration of DCF
(24−218mg L−1), and keeping constant the sorbent material con-
centration (0.5 g L−1). Experimental findings highlighted that the
maximum sorption capacity of the sorbent, equal to 180mg g-1, was
independent of temperature. The Langmuir equilibrium constant

decreased with increasing temperature from 8.7× 10-2 to 2.2× 10-2 L
mg-1, pointing out the exothermicity of the process.

Despite the PSO model showed better fitting (DCLK Adj R2=0.97,
RMSE=7.5, AIC= 399; PSO Adj R2= 0.99, RMSE=4.8, AIC= 317),
the DCLK model was considered the best choice as it not only fitted well
the experimental data but also provided predictive information on the
sorbate behaviour. The kinetic parameters α and β linearly increased
from 5×10−5 to 20× 10−5 L mg-1 min-0.5, and from 3×10-6 to
20× 10-6 L mg-1 min-1, respectively, with the temperature rising from
288 to 318 K.
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