5,973 research outputs found

    Fractional quantum Hall effect without energy gap

    Full text link
    In the fractional quantum Hall effect regime we measure diagonal (ρxx\rho_{xx}) and Hall (ρxy\rho_{xy}) magnetoresistivity tensor components of two-dimensional electron system (2DES) in gated GaAs/Alx_{x}Ga1x_{1-x}As heterojunctions, together with capacitance between 2DES and the gate. We observe 1/3- and 2/3-fractional quantum Hall effect at rather low magnetic fields where corresponding fractional minima in the thermodynamical density of states have already disappeared manifesting complete suppression of the quasiparticle energy gaps.Comment: 4 pages, 4 figure

    Topological oscillations of the magnetoconductance in disordered GaAs layers

    Full text link
    Oscillatory variations of the diagonal (GxxG_{xx}) and Hall (GxyG_{xy}) magnetoconductances are discussed in view of topological scaling effects giving rise to the quantum Hall effect. They occur in a field range without oscillations of the density of states due to Landau quantization, and are, therefore, totally different from the Shubnikov-de Haas oscillations. Such oscillations are experimentally observed in disordered GaAs layers in the extreme quantum limit of applied magnetic field with a good description by the unified scaling theory of the integer and fractional quantum Hall effect.Comment: 4 pages, 4 figure

    Laser welding of metal-polymer-metal sandwich panels

    Get PDF
    In the production of metal-polymer multilayer composite parts, e.g., for automotive applications, the possibilities of thermal joining are limited due to the instability of the polymer core at elevated temperatures. Accordingly, such materials require a special approach to their welding. The three-layered metal-polymer-metal samples were made of DPK 30/50+ZE dual-phase steel as cover sheets that were electrolytic galvanized, and a polypropylene-polyethylene foil as core material, with thicknesses of 0.48/0.3/0.48 mm. The samples were welded on both sides using a 1.06 μm Nd:YAG ROFIN StarWeld Manual Performance laser. Significant improvements of the welding conditions are achieved by machining the edges of materials to be welded. The parameters of laser welding were chosen in such a way that the polymer structure remained almost unchanged. The weld thickness was about 40% of the thickness of each steel layer. It was established that within the selected laser processing parameters the melting occurred uniformly, while the polymer layer practically did not change its structure. Therefore, it can be stated that two-sided joint welding of metal-polymer-metal composite sandwich panels, without significant degradation of the polymer core layer, is feasible

    SISYPHUS—structural alignments for proteins with non-trivial relationships

    Get PDF
    With the increasing amount of structural data, the number of homologous protein structures bearing topological irregularities is steadily growing. These include proteins with circular permutations, segment-swapping, context-dependent folding or chameleon sequences that can adopt alternative secondary structures. Their non-trivial structural relationships are readily identified during expert analysis but their automatic identification using the existing computational tools still remains difficult or impossible. Such non-trivial cases of protein relationships are known to pose a problem to multiple alignment algorithms and to impede comparative modeling studies. They support a new emerging concept of evolutionary changeable protein fold, which creates practical difficulties for the hierarchical classifications of protein structures.To facilitate the understanding of, and to provide a comprehensive annotation of proteins with such non-trivial structural relationships we have created SISYPHUS ([Σισυϕος]—in Greek crafty), a compendium to the SCOP database. The SISYPHUS database contains a collection of manually curated structural alignments and their inter-relationships. The multiple alignments are constructed for protein structural regions that range from oligomeric biological units, or individual domains to fragments of different size. The SISYPHUS multiple alignments are displayed with SPICE, a browser that provides an integrated view of protein sequences, structures and their annotations. The database is available from

    The theoretical DFT study of electronic structure of thin Si/SiO2 quantum nanodots and nanowires

    Full text link
    The atomic and electronic structure of a set of proposed thin (1.6 nm in diameter) silicon/silica quantum nanodots and nanowires with narrow interface, as well as parent metastable silicon structures (1.2 nm in diameter), was studied in cluster and PBC approaches using B3LYP/6-31G* and PW PP LDA approximations. The total density of states (TDOS) of the smallest quasispherical silicon quantum dot (Si85) corresponds well to the TDOS of the bulk silicon. The elongated silicon nanodots and 1D nanowires demonstrate the metallic nature of the electronic structure. The surface oxidized layer opens the bandgap in the TDOS of the Si/SiO2 species. The top of the valence band and the bottom of conductivity band of the particles are formed by the silicon core derived states. The energy width of the bandgap is determined by the length of the Si/SiO2 clusters and demonstrates inverse dependence upon the size of the nanostructures. The theoretical data describes the size confinement effect in photoluminescence spectra of the silica embedded nanocrystalline silicon with high accuracy.Comment: 22 pages, 5 figures, 1 tabl

    Gene3D: comprehensive structural and functional annotation of genomes

    Get PDF
    Gene3D provides comprehensive structural and functional annotation of most available protein sequences, including the UniProt, RefSeq and Integr8 resources. The main structural annotation is generated through scanning these sequences against the CATH structural domain database profile-HMM library. CATH is a database of manually derived PDB-based structural domains, placed within a hierarchy reflecting topology, homology and conservation and is able to infer more ancient and divergent homology relationships than sequence-based approaches. This data is supplemented with Pfam-A, other non-domain structural predictions (i.e. coiled coils) and experimental data from UniProt. In order to enhance the investigations possible with this data, we have also incorporated a variety of protein annotation resources, including protein–protein interaction data, GO functional assignments, KEGG pathways, FUNCAT functional descriptions and links to microarray expression data. All of this data can be accessed through a newly re-designed website that has a focus on flexibility and clarity, with searches that can be restricted to a single genome or across the entire sequence database. Currently Gene3D contains over 3.5 million domain assignments for nearly 5 million proteins including 527 completed genomes. This is available at: http://gene3d.biochem.ucl.ac.uk

    3D-printing Today: to the Question of the Most Functional Models (the Experience of my Own)

    Full text link
    The problem of 3D-printing today is becoming more and more relevant today. Because of the growing meaning this technology in different spheres of social life we consider it to be necessary of making analyze of the most effective 3D printing devices demanded nowadays. Using the experience of real working with some of them we have to present the rating of our own

    Resistivity peak values at transition between fractional quantum Hall states

    Full text link
    Experimental data available in the literature for peak values of the diagonal resistivity in the transitions between fractional quantum Hall states are compared with the theoretical predictions. It is found that the majority of the peak values are close to the theoretical values for two-dimensional systems with moderate mobilities.Comment: 3 pages, 1 figur

    Suppression of hole-hole scattering in GaAs/AlGaAs heterostructures under uniaxial compression

    Full text link
    Resistance, magnetoresistance and their temperature dependencies have been investigated in the 2D hole gas at a [001] p-GaAs/Al0.5_{0.5}Ga0.5_{0.5}As heterointerface under [110] uniaxial compression. Analysis performed in the frame of hole-hole scattering between carriers in the two spin splitted subbands of the ground heavy hole state indicates, that h-h scattering is strongly suppressed by uniaxial compression. The decay time τ01\tau_{01} of the relative momentum reveals 4.5 times increase at a uniaxial compression of 1.3 kbar.Comment: 5 pages, 3 figures. submitted to Phys.Rev.
    corecore