1,406 research outputs found

    On transient dynamics, off-equilibrium behaviour and identification in blended multiple model structures

    Get PDF
    The use of multiple-model techniques has been reported in a variety of control and signal processing applications. However, several theoretical analyses have recently appeared which outline fundamental limitations of these techniques in certain domains of application. In particular, the identifiability and interpretability of local linear model parameters in transient operating regimes is shown to be limited. Some modifications to the basic paradigm are suggested which overcome a number of problems. As an alternative to parametric identification of blended multiple model structures, nonparametric Gaussian process priors are suggested as a means of providing local models, and the results compared to a multiple-model approach in a Monte Carlo simulation on some simulated vehicle dynamics data

    Nonparametric identification of linearizations and uncertainty using Gaussian process models – application to robust wheel slip control

    Get PDF
    Gaussian process prior models offer a nonparametric approach to modelling unknown nonlinear systems from experimental data. These are flexible models which automatically adapt their model complexity to the available data, and which give not only mean predictions but also the variance of these predictions. A further advantage is the analytical derivation of derivatives of the model with respect to inputs, with their variance, providing a direct estimate of the locally linearized model with its corresponding parameter variance. We show how this can be used to tune a controller based on the linearized models, taking into account their uncertainty. The approach is applied to a simulated wheel slip control task illustrating controller development based on a nonparametric model of the unknown friction nonlinearity. Local stability and robustness of the controllers are tuned based on the uncertainty of the nonlinear models’ derivatives

    On the interpretation and identification of dynamic Takagi-Sugenofuzzy models

    Get PDF
    Dynamic Takagi-Sugeno fuzzy models are not always easy to interpret, in particular when they are identified from experimental data. It is shown that there exists a close relationship between dynamic Takagi-Sugeno fuzzy models and dynamic linearization when using affine local model structures, which suggests that a solution to the multiobjective identification problem exists. However, it is also shown that the affine local model structure is a highly sensitive parametrization when applied in transient operating regimes. Due to the multiobjective nature of the identification problem studied here, special considerations must be made during model structure selection, experiment design, and identification in order to meet both objectives. Some guidelines for experiment design are suggested and some robust nonlinear identification algorithms are studied. These include constrained and regularized identification and locally weighted identification. Their usefulness in the present context is illustrated by examples

    Radiation Pressure Feedback in Galaxies

    Full text link
    We evaluate radiation pressure from starlight on dust as a feedback mechanism in star-forming galaxies by comparing the luminosity and flux of star-forming systems to the dust Eddington limit. The linear LFIR--L'HCN correlation provides evidence that galaxies may be regulated by radiation pressure feedback. We show that star-forming galaxies approach but do not dramatically exceed Eddington, but many systems are significantly below Eddington, perhaps due to the "intermittency" of star formation. Better constraints on the dust-to-gas ratio and the CO- and HCN-to-H2 conversion factors are needed to make a definitive assessment of radiation pressure as a feedback mechanism.Comment: To appear in "Conditions and impact of star formation: New results with Herschel and beyond", Proceedings of the 5th Zermatt ISM symposium. 2 pages, 2 figure

    Valuing condition specific health states using simulation contact lenses

    Get PDF
    OBJECTIVE: This paper reports on a study that used contact lenses to simulate the effects of a visual impairment caused by Age Related Macular Degeneration (ARMD). The aim was to examine the feasibility of using this method of simulation and to compare the results from this experiment with those obtained from ARMD patients (n=209) using generic preference-based measures (HUI3 and EQ-5D) and patient time trade-off TTO. METHODS: Utility values were elicited from healthy participants (n=108) by TTO for three ARMD states simulated using contact lenses. RESULTS: A significant relationship was found between visual acuity and TTO values elicited from members of the general population (n=108). It was stronger than that found for HUI3, EQ-5D and own TTO values from patients (n=209). General population values informed by the experience of simulation were found to be significantly different to values from patient TTO and generic preference-based measures for the same level of visual impairment. Socio-demographic characteristics did not significantly affect results, although baseline TTO utility values were positively associated with TTO values for simulated states. CONCLUSIONS: ARMD has a major impact on general population TTO health state values. Differences across four visual health states appear larger than those found for a generic preference-based measures and patient TTO values. For conditions that are difficult to describe and imagine, simulation methods may offer an important method for obtaining better informed general population preferences

    Physical and electrical characteristics of EDM debris

    Get PDF
    AbstractIn EDM, debris plays a key role in the electrical conditions of the discharge gap prior to each spark. Despite this, analysis of debris at all length-scales has not yet been performed, and therefore the nature of debris produced by electrical discharge processes is not fully understood. In this study debris created by the machining of two electrode materials set as negative polarity, silicon and titanium carbide, was centrifuged and imaged using SEM and TEM. From this analysis it was shown that electrode debris is 1nm or lower and up to 10μm in size. Population analysis of the particle size distribution was used to inform an electric field model based on a lattice Boltzmann method framework, simulating the effect of the presence of such debris on the electric field strength. This method is shown to be able to capture the local variation of the electric field and predict qualitatively the correct trend of the electric field strength increasing against the debris concentration. Such data is important for prediction and control of discharge gap size, as well as understanding the impact of a build-up of debris on uncontrolled sparking

    Long-term perturbations due to a disturbing body in elliptic inclined orbit

    Full text link
    In the current study, a double-averaged analytical model including the action of the perturbing body's inclination is developed to study third-body perturbations. The disturbing function is expanded in the form of Legendre polynomials truncated up to the second-order term, and then is averaged over the periods of the spacecraft and the perturbing body. The efficiency of the double-averaged algorithm is verified with the full elliptic restricted three-body model. Comparisons with the previous study for a lunar satellite perturbed by Earth are presented to measure the effect of the perturbing body's inclination, and illustrate that the lunar obliquity with the value 6.68\degree is important for the mean motion of a lunar satellite. The application to the Mars-Sun system is shown to prove the validity of the double-averaged model. It can be seen that the algorithm is effective to predict the long-term behavior of a high-altitude Martian spacecraft perturbed by Sun. The double-averaged model presented in this paper is also applicable to other celestial systems.Comment: 28 pages, 6 figure

    An endogenous inhibitor of angiogenesis downregulated by hypoxia in human aortic valve stenosis promotes disease pathogenesis

    Get PDF
    Acknowledgements The authors would like to acknowledge the NHS Grampian Biorepository for their support and assistance with all immunohistochemistry. Sources of funding This work was generously funded by the British Heart Foundation, UK (FS/17/28/32807) and Grampian NHS Endowments.Peer reviewedPublisher PD

    Suspension high velocity oxy-fuel (SHVOF) spray of delta-theta alumina suspension: phase transformation and tribology

    Get PDF
    Suspension high-velocity oxy-fuel (SHVOF) thermal spray is an emerging spray technology that enables the processing of nanometric feedstock. Although SHVOF thermal sprayed alumina coatings prepared from alpha alumina feedstock have been widely reported, a metastable δ-θ Al2O3 feedstock has yet to be investigated despite its low cost and commercial availability. In this study, an aqueous δ-θ Al2O3 suspension was sprayed on to a stainless steel (SS 304) substrate via SHVOF thermal spraying using an internal injection UTP TopGun. X-ray diffraction (XRD) of the as-sprayed coating showed δ-θ Al2O3 to γ-Al2O3 transformation upon spraying, along with amorphous/nanocrystalline phase formation. Furthermore, post-spray heat treatment of the coatings was performed at 600–750 °C for 6 and 48 h. The microhardness and indentation fracture toughness of the heat treated coatings increased by a factor of two compared to the as-sprayed coatings: due to grain refinement, pore consolidation and phase transformation of amorphous and γ-Al2O3 to δ-Al2O3. Unlubricated sliding wear tests were conducted at room temperature (~25 °C, relative humidity ~60%) using α-Al2O3 balls (Ø 9.5 mm) as the counter body at a normal load of 16.8 N to study the wear performance of the coatings. The wear rate of the as-sprayed coating and the coating heat treated at 600 °C for 6 h is of the order of 10−9 mm3 (Nm)−1, a noticeable improvement over conventional alumina coatings. The coatings heat treated at 750 °C for both 6 and 48 h failed abruptly by severe wear due to their pre-cracked surface

    Understanding the Observed Evolution of the Galaxy Luminosity Function from z=6-10 in the Context of Hierarchical Structure Formation

    Full text link
    Recent observations of the Lyman-break galaxy (LBG) luminosity function (LF) from z~6-10 show a steep decline in abundance with increasing redshift. However, the LF is a convolution of the mass function of dark matter halos (HMF)--which also declines sharply over this redshift range--and the galaxy-formation physics that maps halo mass to galaxy luminosity. We consider the strong observed evolution in the LF from z~6-10 in this context and determine whether it can be explained solely by the behavior of the HMF. From z~6-8, we find a residual change in the physics of galaxy formation corresponding to a ~0.5 dex increase in the average luminosity of a halo of fixed mass. On the other hand, our analysis of recent LF measurements at z~10 shows that the paucity of detected galaxies is consistent with almost no change in the average luminosity at fixed halo mass from z~8. The LF slope also constrains the variation about this mean such that the luminosity of galaxies hosted by halos of the same mass are all within about an order-of-magnitude of each other. We show that these results are well-described by a simple model of galaxy formation in which cold-flow accretion is balanced by star formation and momentum-driven outflows. If galaxy formation proceeds in halos with masses down to 10^8 Msun, then such a model predicts that LBGs at z~10 should be able to maintain an ionized intergalactic medium as long as the ratio of the clumping factor to the ionizing escape fraction is C/f_esc < 10.Comment: 15 pages, 2 figures; results unchanged; accepted by JCA
    corecore