34 research outputs found

    Measuring the Feasibility of Analogical Transfer using Complexity

    Get PDF
    Publisher Copyright: © 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).Analogies are 4-ary relations of the form “A is to B as C is to D". While focus has been mostly on how to solve an analogy, i.e. how to find correct values of D given A, B and C, less attention has been drawn on whether solving such an analogy was actually feasible. In this paper, we propose a quantification of the transferability of a source case (A and B) to solve a target problem C. This quantification is based on a complexity minimization principle which has been demonstrated to be efficient for solving analogies. We illustrate these notions on morphological analogies and show its connections with machine learning, and in particular with Unsupervised Domain Adaptation.Peer reviewe

    IJCAI-ECAI Workshop “Interactions between Analogical Reasoning and Machine Learning” (IARML 2022)

    Get PDF
    International audienceAnalogical reasoning is a remarkable capability of human reasoning, used to solve hard reasoning tasks. It consists in transferring knowledge from a source domain to a different, but somewhat similar, target domain by relying simultaneously on similarities and dissimilarities. In particular, analogical proportions, i.e., statements of the form “A is to B as C is to D", are the basis of analogical inference. Analogical reasoning is pertaining to case-based reasoning and it has contributed to multiple machine learning tasks such as classification, decision making, and automatic translation with competitive results. Moreover, analogical extrapolation can support dataset augmentation (analogical extension) for model learning,especially in environments with few labeled examples. Conversely, advanced neural techniques, such as representation learning, enabled efficient approaches to detecting and solving analogies in domains where symbolic approaches had shown their limits. However, recent approaches using deep learning architectures remain task and domain specific, and strongly rely on ad-hoc representations of objects, i.e., tailor made embeddings.The first workshop Interactions between Analogical Reasoning and Machine Learning (IARML) was hosted by the 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence (IJCAI-ECAI 2022). It brought together AI researchers at the cross roads of machine learning, cognitive sciences and knowledge representation and reasoning, who are interested by the various applications of analogical reasoning in machine learning or, conversely, of machine learning techniques to improve analogical reasoning. The IARML workshop aims to bridge gaps between different AI communities, including case-based reasoning, deep learning and neuro-symbolic machine learning. The workshop welcomed submissions of research papers on all topics at the intersection of analogical reasoning and machine learning. The submissions were subjected to a strict double-blind reviewing process that resulted in the selection of six original contributions and two invited talks, in addition to the two plenary keynote talks

    Modeling needs user modeling

    Get PDF
    Modeling has actively tried to take the human out of the loop, originally for objectivity and recently also for automation. We argue that an unnecessary side effect has been that modeling workflows and machine learning pipelines have become restricted to only well-specified problems. Putting the humans back into the models would enable modeling a broader set of problems, through iterative modeling processes in which AI can offer collaborative assistance. However, this requires advances in how we scope our modeling problems, and in the user models. In this perspective article, we characterize the required user models and the challenges ahead for realizing this vision, which would enable new interactive modeling workflows, and human-centric or human-compatible machine learning pipelines

    On the Transferability of Neural Models of Morphological Analogies

    Get PDF
    International audienceAnalogical proportions are statements expressed in the form "A is to B as C is to D" and are used for several reasoning and classification tasks in artificial intelligence and natural language processing (NLP). In this paper, we focus on morphological tasks and we propose a deep learning approach to detect morphological analogies. We present an empirical study to see how our framework transfers across languages, and that highlights interesting similarities and differences between these languages. In view of these results, we also discuss the possibility of building a multilingual morphological model

    A Neural Approach for Detecting Morphological Analogies

    Get PDF
    International audienceAnalogical proportions are statements of the form "A is to B as C is to D" that are used for several reasoning and classification tasks in artificial intelligence and natural language processing (NLP). For instance, there are analogy based approaches to semantics as well as to morphology. In fact, symbolic approaches were developed to solve or to detect analogies between character strings, e.g., the axiomatic approach as well as that based on Kolmogorov complexity. In this paper, we propose a deep learning approach to detect morphological analogies, for instance, with reinflexion or conjugation. We present empirical results that show that our framework is competitive with the above-mentioned state of the art symbolic approaches. We also explore empirically its transferability capacity across languages, which highlights interesting similarities between them

    Principe de minimum de complexité pour le transfert de connaissances en apprentissage artificiel

    Get PDF
    Classical learning methods are often based on a simple but restrictive assumption: The present and future data are generated according to the same distributions. This hypothesis is particularly convenient when it comes to developing theoretical guarantees that the learning is accurate. However, it is not realistic from the point of view of applicative domains that have emerged in the last years.In this thesis, we focus on four distinct problems in artificial intelligence, that have mainly one common point: All of them imply knowledge transfer from one domain to the other. The first problem is analogical reasoning and concerns statements of the form "A is to B as C is to D". The second one is transfer learning and involves classification problem in situations where the training data and test data do not have the same distribution (nor even belong to the same space). The third one is data stream mining, ie. managing data that arrive one by one in a continuous and high-frequency stream with changes in the distributions. The last one is collaborative clustering and focuses on exchange of information between clustering algorithms to improve the quality of their predictions.The main contribution of this thesis is to present a general framework to deal with these transfer problems. This framework is based on the notion of Kolmogorov complexity, which measures the inner information of an object. This tool is particularly adapted to the problem of transfer, since it does not rely on probability distributions while being able to model the changes in the distributions.Apart from this modeling effort, we propose, in this thesis, various discussions on aspects and applications of the different problems of interest. These discussions all concern the possibility of transfer in multiple domains and are not based on complexity only.Les méthodes classiques d'apprentissage automatique reposent souvent sur une hypothèse simple mais restrictive: les données du passé et du présent sont générées selon une même distribution. Cette hypothèse permet de développer directement des garanties théoriques sur la précision de l'apprentissage. Cependant, elle n'est pas réaliste dans un grand nombre de domaines applicatifs qui ont émergé au cours des dernières années.Dans cette thèse, nous nous intéressons à quatre problèmes différents en intelligence artificielle, unis par un point commun: tous impliquent un transfer de connaissance d'un domaine vers un autre. Le premier problème est le raisonnement par analogie et s'intéresse à des assertions de la forme "A est à B ce que C est à D". Le second est l'apprentissage par transfert et se concentre sur des problèmes de classification dans des contextes où les données d'entraînement et de test ne sont pas de même distribution (ou n'appartiennent même pas au même espace). Le troisième est l'apprentissage sur flux de données, qui prend en compte des données apparaissant continument une à une à haute fréquence, avec des changements de distribution. Le dernier est le clustering collaboratif et consiste à faire échanger de l'information entre algorithmes de clusterings pour améliorer la qualité de leurs prédictions.La principale contribution de cette thèse est un cadre général pour traiter les problèmes de transfer. Ce cadre s'appuie sur la notion de complexité de Kolmogorov, qui mesure l'information continue dans un objet. Cet outil est particulièrement adapté au problème de transfert, du fait qu'il ne repose pas sur la notion de probabilité tout en étant capable de modéliser les changements de distributions.En plus de cet effort de modélisation, nous proposons dans cette thèse diverses discussions sur d'autres aspects ou applications de ces problèmes. Ces discussions s'articulent autour de la possibilité de transfert dans différents domaines et peuvent s'appuyer sur d'autres outils que la complexité

    Measuring the Feasibility of Analogical Transfer using Complexity

    Get PDF
    Publisher Copyright: © 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).Analogies are 4-ary relations of the form “A is to B as C is to D". While focus has been mostly on how to solve an analogy, i.e. how to find correct values of D given A, B and C, less attention has been drawn on whether solving such an analogy was actually feasible. In this paper, we propose a quantification of the transferability of a source case (A and B) to solve a target problem C. This quantification is based on a complexity minimization principle which has been demonstrated to be efficient for solving analogies. We illustrate these notions on morphological analogies and show its connections with machine learning, and in particular with Unsupervised Domain Adaptation.Peer reviewe
    corecore