13 research outputs found

    Cloth & memory {2}

    Get PDF
    This book was published to accompany an exhibition of the same name at Salts Mills, Saltaire, Yorkshire, UK, from 18 August to 3 November 2013, curated by Lesley Millar MBE, Professor of Textile Culture at the University for the Creative Arts

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Regulation of Circadian Clock Gene Expression by Phosphorylation States of KaiC in Cyanobacteria▿ †

    No full text
    Three clock proteins—KaiA, KaiB, and KaiC—have been identified as essential components of the circadian oscillator in cyanobacteria, and Kai-based chemical oscillation is thought to be the basic circadian timing mechanism in Synechococcus elongatus PCC 7942. Transcription and translation of kaiBC in cyanobacterial cells was quantitatively studied to elucidate how these processes are coupled to the chemical oscillator using a strain in which circadian oscillation is under the control of IPTG (isopropyl-β-d-thiogalactopyranoside). The kinetics of repression of kaiBC promoter triggered by IPTG allowed estimation of transient response at 10 h. This response time is suitable for cyanobacterial transcription and/or translation to match with the Kai-based oscillator. Interestingly, kaiBC promoter activity and KaiC phosphorylation showed robust circadian rhythms, whereas trc promoter-driven kaiBC mRNA levels and KaiC accumulation were almost arrhythmic. These results indicate that cyanobacterial circadian rhythms can be generated even if kaiBC expression is constitutive. Moreover, there was a positive correlation between activation of the kaiBC promoter and an increase in the KaiC phosphorylation ratio in three rhythmic conditions. Based on these observations, it is likely that the KaiC phosphorylation ratio is the main factor in the activation of kaiBC promoter. Finally, we quantitatively compared the threshold level of phosphorylated KaiC for the repression or derepression of kaiBC promoter and found that this parameter is an important factor in repressing the kaiBC promoter

    Food Preferences of Patients with Citrin Deficiency

    No full text
    Citrin deficiency is characterized by a wide range of symptoms from infancy through adulthood and presents a distinct preference for a diet composed of high protein, high fat, and low carbohydrate. The present study elucidates the important criteria by patients with citrin deficiency for food selection through detailed analysis of their food preferences. The survey was conducted in 70 citrin-deficient patients aged 2–63 years and 55 control subjects aged 2–74 years and inquired about their preference for 435 food items using a scale of 1–4 (the higher, the more favored). The results showed that the foods marked as “dislike” accounted for 36.5% in the patient group, significantly higher than the 16.0% in the controls. The results also showed that patients clearly disliked foods with 20–24 (% of energy) or less protein, 45–54% (of energy) or less fat, and 30–39% (of energy) or more carbohydrate. Multiple regression analysis showed carbohydrates had the strongest influence on patients’ food preference (β = −0.503). It also showed female patients had a stronger aversion to foods with high carbohydrates than males. The protein, fat, and carbohydrate energy ratio (PFC) of highly favored foods among patients was almost the same as the average PFC ratio of their daily diet (protein 20–22: fat 47–51: carbohydrates 28–32). The data strongly suggest that from early infancy, patients start aspiring to a nutritional balance that can compensate for the metabolism dissonance caused by citrin deficiency in every food

    Long-term outcome of urea cycle disorders: Report from a nationwide study in Japan

    Full text link
    Urea cycle disorders (UCDs) are inherited metabolic disorders with impaired nitrogen detoxification caused by defects in urea cycle enzymes. They often manifest with hyperammonemic attacks resulting in significant morbidity or death. We performed a nationwide questionnaire-based study between January 2000 and March 2018 to document all UCDs in Japan, including diagnoses, treatments, and outcomes. A total of 229 patients with UCDs were enrolled in this study: 73 males and 53 females with ornithine transcarbamylase deficiency (OTCD), 33 patients with carbamoylphosphate synthetase 1 deficiency, 48 with argininosuccinate synthetase deficiency, 14 with argininosuccinate lyase deficiency, and 8 with arginase deficiency. Survival rates at 20 years of age of male and female patients with late-onset OTCD were 100% and 97.7%, respectively. Blood ammonia levels and time of onset had a significant impact on the neurodevelopmental outcome (P < .001 and P = .028, respectively). Hemodialysis and liver transplantation did not prevent poor neurodevelopmental outcomes. While treatment including medication, hemodialysis, and liver transplantation may aid in decreasing blood ammonia and/or preventing severe hyperammonemia, a blood ammonia level ≥ 360 μmol/L was found to be a significant indicator for a poor neurodevelopmental outcome. In conclusion, although current therapy for UCDs has advanced and helped saving lives, patients with blood ammonia levels ≥ 360 μmol/L at onset often have impaired neurodevelopmental outcomes. Novel neuroprotective measures should therefore be developed to achieve better neurodevelopmental outcomes in these patients

    Clinical manifestation and long-term outcome of citrin deficiency: Report from a nationwide study in Japan

    Full text link
    Citrin deficiency is an autosomal recessive disorder caused by mutations in the SLC25A13 gene. The disease can present with age-dependent clinical manifestations: neonatal intrahepatic cholestasis by citrin deficiency (NICCD), failure to thrive, and dyslipidemia by citrin deficiency (FTTDCD), and adult-onset type II citrullinemia (CTLN2). As a nationwide study to investigate the clinical manifestations, medical therapy, and long-term outcome in Japanese patients with citrin deficiency, we collected clinical data of 222 patients diagnosed and/or treated at various different institutions between January 2000 and December 2019. In the entire cohort, 218 patients were alive while 4 patients (1 FTTDCD and 3 CTLN2) had died. All patients <20 years were alive. Patients with citrin deficiency had an increased risk for low weight and length at birth, and CTLN2 patients had an increased risk for growth impairment during adolescence. Liver transplantation has been performed in only 4 patients (1 NICCD, 3 CTLN2) with a good response thereafter. This study reports the diagnosis and clinical course in a large cohort of patients with citrin deficiency and suggests that early intervention including a low carbohydrate diet and MCT supplementation can be associated with improved clinical course and long-term outcome

    Low temperature nullifies the circadian clock in cyanobacteria through Hopf bifurcation

    No full text
    Cold temperatures lead to nullification of circadian rhythms in many organisms. Two typical scenarios explain the disappearance of rhythmicity: the first is oscillation death, which is the transition from self-sustained oscillation to damped oscillation that occurs at a critical temperature. The second scenario is oscillation arrest, in which oscillation terminates at a certain phase. In the field of nonlinear dynamics, these mechanisms are called the Hopf bifurcation and the saddle-node on an invariant circle bifurcation, respectively. Although these mechanisms lead to distinct dynamical properties near the critical temperature, it is unclear to which scenario the circadian clock belongs. Here we reduced the temperature to dampen the reconstituted circadian rhythm of phosphorylation of the recombinant cyanobacterial clock protein KaiC. The data led us to conclude that Hopf bifurcation occurred at ∼19 °C. Below this critical temperature, the self-sustained rhythms of KaiC phosphorylation transformed to damped oscillations, which are predicted by the Hopf bifurcation theory. Moreover, we detected resonant oscillations below the critical temperature when temperature was periodically varied, which was reproduced by numerical simulations. Our findings suggest that the transition to a damped oscillation through Hopf bifurcation contributes to maintaining the circadian rhythm of cyanobacteria through resonance at cold temperatures

    Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution

    No full text
    The authors add a dynamic perspective to earlier reported structures of the cyanobacterial oscillator protein KaiC. Mutant analyses combined with molecular modelling provide novel mechanistic insights into the biochemical ‘ticking' of the circadian clock
    corecore