957 research outputs found

    On a generalization of restricted sum formula for multiple zeta values and finite multiple zeta values

    Full text link
    We prove a new linear relation for multiple zeta values. This is a natural generalization of the restricted sum formula proved by Eie, Liaw and Ong. We also present an analogous result for finite multiple zeta values

    A cyclic analogue of multiple zeta values

    Get PDF
    We consider a cyclic analogue of multiple zeta values (CMZVs), which has two kinds of expressions; series and integral expression. We prove an `integral==series' type identity for CMZVs. By using this identity, we construct two classes of Q\mathbb{Q}-linear relations among CMZVs. One of them is a generalization of the cyclic sum formula for multiple zeta-star values. We also give an alternative proof of the derivation relation for multiple zeta values

    Realization of SU(2)*SU(6) Fermi System

    Get PDF
    We report the realization of a novel degenerate Fermi mixture with an SU(2)*SU(6) symmetry in a cold atomic gas. We successfully cool the mixture of the two fermionic isotopes of ytterbium 171Yb with the nuclear spin I=1/2 and 173Yb with I=5/2 below the Fermi temperature T_ F as 0.46T_F for 171Yb and 0.54T_F for 173Yb. The same scattering lengths for different spin components make this mixture featured with the novel SU(2)*SU(6) symmetry. The nuclear spin components are separately imaged by exploiting an optical Stern-Gerlach effect. In addition, the mixture is loaded into a 3D optical lattice to implement the SU(2)*SU(6) Hubbard model. This mixture will open the door to the study of novel quantum phases such as a spinor Bardeen-Cooper-Schrieffer-like fermionic superfluid.Comment: 4 pages, 5 figures V2: revised reference

    Evaluation of novel CEX resin for continous processing of MAb purification

    Get PDF
    We have evaluated novel cation exchange resin and membrane which is potentially suited for continuous process in biologics manufacturing. Typically cation exchange chromatography (CEX) is used in a bind/elute (B/E) mode for the MAb process since MAb act as cation at the buffer condition used for CEX due to the pI from neutral to weak basic. Generally, purpose of CEX chromatography is to remove aggregates and other impurities like HCP and DNA. Especially, aggregate removal is of interest to the industries. A continuous process in MAb downstream process can solve several bottlenecks in typical batch process. However its capability cannot be fully utilized if some step of chromatography is used in a B/E mode since it will take a longer process time due to the posing of product stream for binding and washing and it will take a more cost due to the requirement of large amount of resins as we use at the batch process. In such a case, chromatography in flowthrough mode has a potential to overcome those issues for both cost and time and enables us to develop more streamlined continuous process. We will present the result of our study to evaluate novel CEX resin developed by Merck Millipore by comparing with the existing process of Mab A and we obtained a conclusion that this resin is fitted to the continuous processing very much. The novel resin showed a better impurity clearance than our existing process. For example, over 65% removal of aggregate by the novel resin was obtained in contrast to no removal by the existing process. A 20-fold better clearance for DNA was confirmed for the novel resin than the existing process. This indicates an additional polishing step can be omitted and this new chromatography can be a strong option if we need to reduce such impurities further. Also the resin cost is expected to be reduced down to 1/10 in maximum since those impurity clearance results were obtained about 10-times larger load than the typical B/E mode operation of CEX. Considering those aspects, we conclude that this resin showed a better fit for a continuous process. We will also discuss an expected effect of the novel CEX resin on cost and process time savings by a continuous proces

    Suzaku and XMM-Newton Observations of the Fornax cluster: Temperature and Metallicity Distribution

    Full text link
    Suzaku observed a central region and five offset regions within 0.2 r180 in the Fornax cluster, a nearby poor cluster, and XMM-Newton mapped the cluster with 15 pointings out to 0.3 r180. The distributions of O, Mg, Si, S, and Fe in the intracluster medium (ICM) were studied with Suzaku, and those of Fe and temperature were studied with XMM. The temperature of the ICM gradually decreases with radius from 1.3 keV at 0.04 r180 to 1 keV at 0.2-0.3 r180. If the new solar abundances of Lodders et al. (2003) and a single-temperature plasma model are adopted, O, Mg, Si, S, and Fe show similar abundances: 0.4-0.6 solar within 0.02-0.2 r180. This Fe abundance is similar to those at 0.1-0.2 r180 in rich clusters and other groups of galaxies. At 0.2-0.3 r180, the Fe abundance becomes 0.2-0.3 solar. A two-temperature plasma model yields ICM abundances that are higher by a factor of 1.2-1.5, but gives similar abundance ratios among O, Mg, Si, S, and Fe. The northern region has a lower ICM temperature and higher brightness and Fe abundance, whereas the southern region has a higher ICM temperature and lower brightness and Fe abundance. These results indicate that the cD galaxy may have traveled from the north because of recent dynamical evolution. The cumulative oxygen- and iron-mass-to-light ratios within 0.3 r180 are more than an order of magnitude lower than those of rich clusters and some relaxed groups of galaxies. Past dynamical evolution might have hindered the strong concentration of hot gas in the Fornax cluster's central region. Scatter in the IMLR and similarity in the element abundances in the ICM of groups and clusters of galaxies indicate early metal synthesis.Comment: 15 pages, 13 figures, accepted for publication in PAS

    QAC RESISTANCE OF P. AERUGINOSA

    Get PDF
    The adaptation mechanism of Pseudomonas aeruginosa ATCC 10145 to quaternary ammonium compounds (QACs) was investigated. A P. aeruginosa strain with adapted resistance to QACs was developed by a standard broth dilution method. It was revealed that P. aeruginosa exhibited remarkable resistance to N-dodecylpyridinium iodide (P-12), whose structure is similar to that of a common disinfectant, cetylpyridinium chloride. Adapted resistance to benzalkonium chloride (BAC), which is commonly used as a disinfectant, was also observed in P. aeruginosa. Moreover, the P-12-resistant strain exhibited cross-resistance to BAC. Analysis of the outer membrane protein of the P-12-resistant strain by two-dimensional polyacrylamide gel electrophoresis showed a significant increase in the level of expression of a protein (named OprR) whose molecular mass was approximately 26 kDa. The actual function of OprR is not yet clear; however, OprR was expected to be an outer membrane-associated protein with homology to lipoproteins of other bacterial species, according to a search of the National Center for Biotechnology Information website with the BLAST program by use of the N-terminal sequence of OprR. A correlation between the level of expression of OprR and the level of resistance of P. aeruginosa to QACs was observed by using a PA2800 gene knockout mutant derived from the P-12-resistant strain. The knockout mutant recovered susceptibility not only to P-12 but also to BAC. These results suggested that OprR significantly participated in the adaptation of P. aeruginosa to QACs, such as P-12 and BAC

    Strict Limit on CPT Violation from Polarization of Gamma-Ray Bursts

    Full text link
    We report the strictest observational verification of CPT invariance in the photon sector, as a result of gamma-ray polarization measurement of distant gamma-ray bursts (GRBs), which are brightest stellar-size explosions in the universe. We detected the gamma-ray polarization of three GRBs with high significance, and the source distances may be constrained by a well-known luminosity indicator for GRBs. For the Lorentz- and CPT-violating dispersion relation E_{\pm}^2=p^2 \pm 2\xi p^3/M_{Pl}, where \pm denotes different circular polarization states of the photon, the parameter \xi is constrained as |\xi|<O(10^{-15}). Barring precise cancellation between quantum gravity effects and dark energy effects, the stringent limit on the CPT-violating effect leads to the expectation that quantum gravity presumably respects the CPT invariance.Comment: 4 pages; accepted for publication in Physical Review Letters; redshift estimates of GRBs changed (i.e z=0.382 was wrong for GRB 110721A) and calculations of \xi limit improved from the previous versio
    corecore