48 research outputs found

    Timing of the reproductive cycle of waved whelk, Buccinum undatum, on the US Mid-Atlantic Bight

    Get PDF
    Development of the unmanaged waved whelk (Buccinum undatum) fishery on the Mid-Atlantic continental shelf of the United States has initiated investigation into fisheries-related biological and population attributes of the species in this region. Maturation and reproduction timing vary by location for this species and are likely linked to bottom water temperature. This study examined the seasonal fluctuations in relevant body metrics and gonadosomatic index in relation to bottom temperature to assess the timing of the reproductive cycle of the B. undatum population in the southern-most extent of this species\u27 range in the Atlantic. To characterize variation over the maturation schedule, nine locations in the Mid-Atlantic Bight (MAB) were sampled five times between January 2017 and September 2017. Maturity was assessed macroscopically, with morphological methods, and via gonadosomatic indices. Male behavioral maturity estimates, based on a penis length to shell length index (PL50), were compared to estimates made using other methods for assessing maturity to test the efficacy of this commonly used ratio. Mature whelk were found in all months and peak reproductive activity was observed in spring and early summer. This timing suggests that ideal sampling to visually identify maturity to estimate size of maturity would be late winter or early spring. Unique oceanographic dynamics in the MAB, such as strong seasonal stratification results in large changes in annual bottom temperature which appears to be closely linked to the reproductive cycle in this region. Our data suggest that B. undatum in the MAB experience spawning and development at similar to 7-8 degrees C; temperatures warmer than Canadian populations and cooler than some UK conspecifics. To our knowledge, this is the first study to document the annual reproductive cycle of waved whelk in the United States

    The Case of the ‘Missing’ Arctic Bivalves and The Walrus: The Biggest [Overlooked] Clam Fishery on the Planet

    Get PDF
    Bivalve molluscs represent a significant proportion of the diet of both Atlantic and Pacific walrus (Odobenus rosmarus rosmarus and Odobenus rosmarus divergens, respectively) and are pivotal to benthic–pelagic coupling and carbonate cycling in the Arctic oceans. The latter is of particular relevance in a period of seasonal ice retreat, freshwater release into associated surface waters, decreasing water pH, and possible undersaturation of Arctic waters with respect to aragonite. Using population estimates and predation rates for the walruses on bivalve molluscs, a conservative estimate of bivalve consumption in the regions of active walruses foraging is 2.0–3.0 3 106 tonnes y–1—a tonnage comparable to the landings for the largest U.S. commercial fishery, the walleye pollock fishery in the eastern Bering Sea. Predation loss to other apex predators such as bearded seals is discounted. Using production:biomass ratios comparable to other high-latitude bivalves, a conservative estimate of bivalve standing stock required to support walrus populations is 0.4–3.0 3 107 tonnes. Whereas predominant clam prey species exhibit longevity in the 30+ y range, sampled populations in the Bering and Chukchi seas are dominated by small, often less than 1.0 cm individuals. Large clams are rare to absent in samples, suggesting either rapid turnover of the population with high predation balanced by high recruitment and/or a bias in sampling that discounts larger, more sparse individuals. Walrus grazing contributes up to 4.0–6.03106 tonnes y–1 of carbonate to buffering of near-surface sediments in Arctic regions. Accurate estimates of bivalve biomass and, thereby, the carbonate budget of Arctic shelf clam species, are critical to understanding the stability of associated continental shelf communities with continued warming of these high-latitude systems and their associated tendency toward aragonite undersaturation

    The Atlantic surfclam fishery and offshore wind energy development: 2. Assessing economic impacts

    Get PDF
    The Atlantic surfclam (Spisula solidissima) fishery generates approximately USD 30 million in landings revenues annually, distributed across ports throughout the US Mid-Atlantic and Northeast. Overlap between areas of Atlantic surfclam harvests and offshore wind energy leasing make the fishery vulnerable to exclusion and effort displacement as development expands in the region. An existing integrated bioeconomic agent-based model, including spatial dynamics in Atlantic surfclam stock biology, heterogeneous captain behaviour, and federal management processes, was extended to incorporate costs and revenues for fishing vessels and processors and used to evaluate the potential economic effects of offshore wind development on the Atlantic surfclam fishery. Fishing activity and economic outcomes were simulated under different offshore wind energy development scenarios that impose spatial restrictions on Atlantic surfclam vessel fishing and transiting behaviour. Decreases in the number of trips and shifts in the spatial distribution of fishing effort reduced revenues for Atlantic surfclam fishing vessels and processors by ∼3–15% and increased average fishing costs by \u3c 1–5%, with impacts varying across development scenarios and fishing ports. The modelling approach used in this analysis has potential for addressing additional questions surrounding sustainable ocean multi-use and further quantifying interactions between offshore wind energy development and commercial fisheries

    The Role of Larval Dispersal in Metapopulation Gene Flow: Local Population Dynamics Matter

    Get PDF
    The degree of genetic connectivity among populations in a metapopulation has direct consequences for species evolution, development of disease resistance, and capacity of a metapopulation to adapt to climate change. This study used a metapopulation model that integrates population dynamics, dispersal, and genetics within an individual-based model framework to examine the mechanisms and dynamics of genetic connectivity within a metapopulation. The model was parameterized to simulate four populations of oysters (Crassostrea virginica) from Delaware Bay on the mid-Atlantic coast of the United States. Differences among the four populations include a strong spatial gradient in mortality, a spatial gradient in growth rates, and uneven population abundances. Simulations demonstrated a large difference in the magnitude of neutral allele transfer with changes in population abundance and mortality (on average between 14 and 25% depending on source population), whereas changes in larval dispersal were not effective in altering genetic connectivity (on average between 1 and 8%). Simulations also demonstrated large temporal changes in metapopulation genetic connectivity including shifts in genetic sources and sinks occurring between two regimes, the 1970s and 2000s. Although larval dispersal in a sessile marine population is the mechanism for gene transfer among populations, these simulations demonstrate the importance of local dynamics and characteristics of the adult component of the populations in the flow of neutral alleles within a metapopulation. In particular, differential adult mortality rates among populations exert a controlling influence on dispersal of alleles, an outcome of latent consequence for management of marine populations

    Estimating connectivity of hard clam (Mercenaria mercenaria) and eastern oyster (Crassostrea virginica) larvae in Barnegat Bay

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goodwin, J. D., Munroe, D. M., Defne, Z., Ganju, N. K., & Vasslides, J. Estimating connectivity of hard clam (Mercenaria mercenaria) and eastern oyster (Crassostrea virginica) larvae in Barnegat Bay. Journal of Marine Science and Engineering, 7(6), (2019): 167, doi:10.3390/jmse7060167.Many marine organisms have a well-known adult sessile stage. Unfortunately, our lack of knowledge regarding their larval transient stage hinders our understanding of their basic ecology and connectivity. Larvae can have swimming behavior that influences their transport within the marine environment. Understanding the larval stage provides insight into population connectivity that can help strategically identify areas for restoration. Current techniques for understanding the larval stage include modeling that combines particle attributes (e.g., larval behavior) with physical processes of water movement to contribute to our understanding of connectivity trends. This study builds on those methods by using a previously developed retention clock matrix (RCM) to illustrate time dependent connectivity of two species of shellfish between areas and over a range of larval durations. The RCM was previously used on physical parameters but we expand the concept by applying it to biology. A new metric, difference RCM (DRCM), is introduced to quantify changes in connectivity under different scenarios. Broad spatial trends were similar for all behavior types with a general south to north progression of particles. The DRCMs illustrate differences between neutral particles and those with behavior in northern regions where stratification was higher, indicating that larval behavior influenced transport. Based on these findings, particle behavior led to small differences (north to south movement) in transport patterns in areas with higher salinity gradients (the northern part of the system) compared to neutral particles. Overall, the dominant direction for particle movement was from south to north, which at times was enhanced by winds from the south. Clam and oyster restoration in the southern portion of Barnegat Bay could serve as a larval supply for populations in the north. These model results show that coupled hydrodynamic and particle tracking models have implications for fisheries management and restoration activities.This work is supported by the Barnegat Bay Partnership EPA grants CE98212311, CE98212312. We extend our deep thanks to anonymous reviewers and Lisa Lucas who provided thoughtful input that improved the manuscript. We thank Matthew Kozak and Ian Mitchell for technical advice and Elizabeth North for LTRANS guidance. Joe Caracapa and Jennifer Gius provided help running remote simulations. COAST model source code is available at https://code.usgs.gov/coawstmodel/COAWST [50]. The hydrodynamic model outoput is available at: http://geoport.whoi.edu/thredds/catalog/clay/usgs/users/zdefne/GRL/catalog.html [21] and particle tracking model outputs are available from the corresponding author upon request

    Bivalve Molluscs: Barometers of Climate Change in Arctic Marine Systems

    Get PDF
    Bivalve mollusks store a complete history of their life in the growth lines in their valves. Through sclerochronology, in combination with isotope signatures, it is possible to reconstruct both post-recruitment growth history at the individual level and commensurate environmental records of temperature and salinity. Growth patterns are integrators of local primary productivity; spatial and temporal changes in growth illustrate commensurate patterns of food availability. Mactrid clams are long-lived, benthic dominant species found on inner continental shelves throughout the Northern Hemisphere where they variously support major fisheries (Spisula solidissima in the Mid-Atlantic Bight, Mactromeris polynyma in eastern Canada, Spisula sachalinensis in Japan) and recreational fisheries (Mactromeris polynyma in Alaska), and serve as dietary items for charismatic species such as bearded seals (Erignathus barbatus) and walrus Odobenus rosmarus divergens). Ongoing studies, employing sophisticated adult growth and larval dispersal models of the response of Spisula solidissima to climate change in the Mid-Atlantic Bight, suggest the general use of mactrids as barometers of climate change over broader geographic footprints. Mactromeris polynyma is a candidate species for shallow arctic marine systems, having a pan-arctic distribution from the Gulf of Maine in the Atlantic to the Bering Sea and Gulf of Alaska in the northern Pacific. The longevity of extant individuals (≤25 years) provides opportunity for detailed reconstruction of the benthic environment and food regimes at the decadal level.https://scholarworks.wm.edu/vimsbooks/1010/thumbnail.jp

    Outcomes of Asymmetric Selection Pressure and Larval Dispersal on Evolution of Disease Resistance: A Metapopulation Modeling Study With Oysters

    Get PDF
    Marine diseases are a strong selective force that can have important economic and ecological consequences. Larval dispersal patterns, selective mortality and individual growth rates can modulate metapopulation responses to disease pressure. Here, we use a modeling framework that includes distinct populations, connected via larval transport, with varying disease selection pressure and connectivity to examine how these dynamics enhance or inhibit the evolution of disease resistance in metapopulations. Our system, oysters and MSX disease, is one in which disease resistance is highly and demonstrably heritable. Simulations show that under conditions of population isolation (i.e. local retention of larvae) and strong disease selection, populations rapidly evolve genetic disease resistance. Varying the patterns of larval dispersal alone doubles the time for evolution of disease resistance. Spatially varying disease in the absence of larval dispersal leaves some populations unable to respond to the disease, whereas adding larval dispersal slows the response of populations under strong selection and speeds the response in populations under low selection when fitness is based on relatively limited genetic structure (‘juvenile fitness’ in our simulations). Under spatially variable disease pressure, larval dispersal generates a fourfold greater variance in fitness outcomes across the dispersal patterns tested. In a metapopulation, populations experiencing lower selection pressure will tend to slow the development of other, more heavily selected populations. This suggests that conservation efforts aimed at improving overall metapopulation resistance in the face of marine diseases should target those populations under modest or high disease pressure, rather than protecting those experiencing low selective pressure

    Potential Repercussions of Offshore Wind Energy Development in the Northeast United States for the Atlantic Surfclam Survey and Population Assessment

    Get PDF
    The Atlantic surfclam Spisula solidissima fishery, which spans the U.S. Northeast continental shelf, is among the most exposed to offshore wind energy development impacts because of the overlap of fishing grounds with wind energy lease areas, the hydraulic dredges used by the fishing vessels, and the location of vessel home ports relative to the fishing grounds. The Atlantic surfclam federal assessment survey is conducted using a commercial fishing vessel in locations that overlap with the offshore wind energy development. Once wind energy turbines, cables, and scour protection are installed, survey operations within wind energy lease areas may be curtailed or eliminated due to limits on vessel access, safety requirements, and assessment survey protocols. The impact of excluding the federal assessment survey from wind energy lease areas was investigated using a spatially explicit, agent-based modeling framework that integrates Atlantic surfclam stock biology, fishery captain and fleet behavior, and federal assessment survey and management decisions. Simulations were designed to compare assessment estimates of spawning stock biomass (SSB) and fishing mortality (F) for scenarios that excluded the survey from (1) wind energy lease areas or (2) wind energy lease areas and potential wind energy lease areas (“call areas”). For the most restricted scenario, the simulated stock assessment estimated 17% lower SSB relative to an unrestricted survey, placing it below the SSB target. The simulated F increased by 7% but was still less than the accepted F threshold. Changes in biological reference points were driven by the inability to access the Atlantic surfclam biomass within the wind energy lease areas. Deviations in reference points reflected the proportion of the population excluded from the survey. Excluding the Atlantic surfclam assessment surveys from the regions designated for offshore wind development can alter long-term stock assessments by increasing uncertainty in metrics that are used to set fishing quotas
    corecore