
W&M ScholarWorks W&M ScholarWorks 

VIMS Articles Virginia Institute of Marine Science 

12-8-2020 

The Case of the ‘Missing’ Arctic Bivalves and The Walrus: The The Case of the ‘Missing’ Arctic Bivalves and The Walrus: The 

Biggest [Overlooked] Clam Fishery on the Planet Biggest [Overlooked] Clam Fishery on the Planet 

Roger L. Mann 
Virginia Institute of Marine Science 

Eric N. Powell 

Daphne M. Munroe 

Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles 

 Part of the Aquaculture and Fisheries Commons, and the Marine Biology Commons 

Recommended Citation Recommended Citation 
Mann, Roger L.; Powell, Eric N.; and Munroe, Daphne M., The Case of the ‘Missing’ Arctic Bivalves and The 
Walrus: The Biggest [Overlooked] Clam Fishery on the Planet (2020). Journal of Shellfish Research, 39(3), 
501-509. 
doi: 10.2983/035.039.0301 

This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M 
ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M 
ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/vimsarticles
https://scholarworks.wm.edu/vims
https://scholarworks.wm.edu/vimsarticles?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F2031&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/78?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F2031&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F2031&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


THE CASE OF THE �MISSING� ARCTIC BIVALVES AND THE WALRUS: THE BIGGEST

[OVERLOOKED] CLAM FISHERY ON THE PLANET

ROGER MANN,1* ERIC N. POWELL2 AND DAPHNE M. MUNROE3

1Virginia Institute of Marine Science, William & Mary, Rt. 1208 Greate Road, Gloucester Point, VA
23062-1346; 2Gulf Coast Research Laboratory, University of SouthernMississippi, 703 East BeachDrive,
Ocean Springs,MS 39564; 3Haskin Shellfish Research Laboratory, Rutgers University, 6959Miller Ave.,
Port Norris, NJ 08349

ABSTRACT Bivalve molluscs represent a significant proportion of the diet of both Atlantic and Pacific walrus (Odobenus

rosmarus rosmarus and Odobenus rosmarus divergens, respectively) and are pivotal to benthic–pelagic coupling and carbonate

cycling in the Arctic oceans. The latter is of particular relevance in a period of seasonal ice retreat, freshwater release into

associated surface waters, decreasing water pH, and possible undersaturation of Arctic waters with respect to aragonite. Using

population estimates and predation rates for the walruses on bivalve molluscs, a conservative estimate of bivalve consumption in

the regions of active walruses foraging is 2.0–3.0 3 106 tonnes y–1—a tonnage comparable to the landings for the largest U.S.

commercial fishery, the walleye pollock fishery in the eastern Bering Sea. Predation loss to other apex predators such as bearded

seals is discounted. Using production:biomass ratios comparable to other high-latitude bivalves, a conservative estimate of

bivalve standing stock required to support walrus populations is 0.4–3.0 3 107 tonnes. Whereas predominant clam prey species

exhibit longevity in the 30+ y range, sampled populations in the Bering and Chukchi seas are dominated by small, often less than

1.0 cm individuals. Large clams are rare to absent in samples, suggesting either rapid turnover of the population with high

predation balanced by high recruitment and/or a bias in sampling that discounts larger, more sparse individuals. Walrus grazing

contributes up to 4.0–6.03 106 tonnes y–1 of carbonate to buffering of near-surface sediments in Artic regions. Accurate estimates

of bivalve biomass and, thereby, the carbonate budget of Arctic shelf clam species, are critical to understanding the stability of

associated continental shelf communities with continued warming of these high-latitude systems and their associated tendency

toward aragonite undersaturation.

KEY WORDS: walrus, Odobenus rosmarus divergens, Odobenus rosmarus rosmarus, bivalves, carbonate budget, P:B ratio

THE ‘‘MISSING’’ MOLLUSCS OF THE ARCTIC: EVIDENCE

OF EXISTENCE

In Northern Hemisphere estuaries and coastal bays, the
carbonate producers are typically oysters (genus Crassostrea,

less so Saccostrea and Ostrea) or mussels (Mytilidae) as epi-
faunal reef-forming representatives (and arguably the dominant
form where they have not been extirpated by human activity),

often supplemented in sedimentary plains by Venerids (e.g.,
Mercenaria, Saxidomus, and Tapes) and Cardiids (e.g., Car-
dium, Cerastoderma, and Clinocardium). On the continental
shelves of the Northern Hemisphere in the subtidal through

100-m realm, the Mactrids (Spisula, Tresus, and Mactra) are
among the largest and most abundant nonsymbiont bearing
forms. These genera, plusArctica islandica, dominate the north-

temperate to boreal shelves of both the North Pacific and North
Atlantic margins. The proverbial missing piece in the Northern
Hemisphere shelf inventory is the identification of large infau-

nal bivalves on the Arctic shelf.
The opinion is proffered that large, long-lived bivalves are

present in the Arctic shelf ecosystem, and in extraordinary, but

unknown, numbers. Supporting evidence is provided in the
food demand of Pacific and Atlantic walrus populations [Odo-
benus rosmarus divergens (Illiger, 1815) and Odobenus rosmarus
rosmarus (Linnaeus, 1758), respectively]. Clams are the most

common dietary item for the walruses (Fay 1982, Ray et al.
2006, NAAMCO 2017). Using walrus population estimates and
quantitative dietary data, conservative estimates are developed

of bivalve consumption and bivalve standing stock on the

Arctic shelf, with a consideration of the role of walrus predation
on carbonate cycling in these extensive, relatively shallow shelf
waters.

McLeod et al. (2014) and Higdon and Stewart (2018)

provide a recent review of the biology, biogeography, and sta-
tus of circumpolar walrus populations. Pacific walruses inhabit
the Bering, Chukchi, and Laptev seas1 (see Figure 1 in McLeod

et al. 2014). Male Pacific walruses weigh up to 1,700 kg and
reach 4 m in length. Female Pacific walruses weigh between 400
and 1,250 kg and reach 2.3–3.1 m in length. Age at sexual ma-

turity for males and females is 8–10 y (NAAMCO 2017). At-
lantic walruses inhabit coastal areas of northeastern Canada,
Greenland, Arctic Norway including Svalbard, and Franz Josef

Land, and have recently returned (early 2000s) to Novaya
Zemlya (Kara Sea) in Russia.2 Male Atlantic walruses weigh
between 1,200 and 1,500 kg and approach 3m in length. Female
Atlantic walruses are smaller at 600–700 kg and 2.5 m in length.

*Corresponding author. E-mail: rmann@vims.edu

DOI: 10.2983/035.039.0301

1The disputed status of the Laptev Sea population as a subspecies is

examined by Lindqvist et al. (2009) using molecular and morphometric

methods to assess the taxonomic status of Odobenus r. laptevi and to

analyze the systematic and phylogeographic relationships between the

three purported walrus subspecies. Lindqvist et al. recommend that O. r.

laptevi be abandoned and the Laptev walrus instead be recognized as

the westernmost population of the Pacific walrus Odobenus r. divergens.

The Laptev population is a small population that was estimated at

4,000–5,000 animals according to Bychkov (1975, cited in Lowry 2015).

Current abundance is unknown (Higdon & Stewart 2018).
2McLeod et al. (2014) report that exploitation of the Atlantic walrus in the

16th–18th century resulted in their extirpation from the Canadian Mari-

times. The species has not inhabited areas south of 55�N for approxi-

mately 250 y.
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Calves weigh 85 kg (Born et al. 1995). Atlantic walruses reach
maturity at 5–12 y and produce one calf every 2–3 y thereafter.

Both Pacific and Atlantic walruses have life expectancies of up
to 40 y. Given the limited number of predators on adult wal-
ruses (e.g., polar bears and killer whales), natural mortality
rates are low. Taylor andUdevitz (2014) provide an exploration

of vital rates in the 1974 to 2006 period. Udevitz et al. (2013)
note the possibility that as sea ice decreases and walruses must
use land haul outs more frequently, consequent increased den-

sities and population disturbance at haul-out locations have
increased mortality in calves.

A series of Pacific walrus population estimates from aerial

surveys have been made by joint U.S. and the former Soviet
Union (now Russian) scientists since the implementation of the
U.S. Marine Mammal Protection Act in 1972 and international
agreements to limit hunting to subsistence levels for native

peoples. The initial 1975 survey estimated the population size at
221,360. Additional surveys in 1980, 1985, and 1990 gave esti-
mates of 246,360, 234,020, and 201,039, respectively. The 1990

estimate did not include part of the eastern Chukchi Sea, a re-
gion usually inhabited by walruses in more typical ice years,
because ice was not present. A 2006 survey focusing on Pacific

walruses, also not covering the entire range, estimated the
population at 129,000, with a wide confidence interval of
55,000–550,000 animals (Speckman et al. 2011). The projected

status of the Pacific walrus in the 21st century is increasingly
fragile (Jay et al. 2011). Atlantic walrus population estimates
are muchmore modest. NAAMCO (2017) states that the largest
of the Atlantic stocks in Arctic Canada and West Greenland

number approximately 20,000 individuals, sufficiently small to
be listed as ‘‘vulnerable’’ and approaching ‘‘near threatened’’ on
the global IUCN Red List (Kovacs 2016). The Svalbard pop-

ulation of Atlantic walruses remains small at 2,629 in August
2006 (Lydersen & Kovacs 2014). For the current estimation of
Arctic-wide bivalve standing stock from walrus predation, a

conservative collective population size of 200,000 adult wal-
ruses is assumed.

Walruses feed in depths less than 80 m (260 ft), but typically
in 10–50 m (30–160 ft). Bornhold et al. (2005) describe foraging

pits and narrow, sinuous furrows related to walrus feeding in
depths less than 60m on sandy seafloors in Bristol Bay, AK, and
note the similarity to signatures found in the Bering and

Chukchi seas. Walrus migration patterns, through swimming
and riding ice flows, enable a wide annual geographic range of
foraging (Higdon & Stewart 2018). Walruses rely on broken

pack ice to gain access to feeding grounds (Fay 1982). De-
creasing seasonal ice cover over much of the walrus feeding
grounds will reduce access to productive offshore feeding

grounds; however, walruses have been recorded in deeper waters
as part of migration patterns and where feeding is not expected.
For example, Atlantic walruses have been tracked across exten-
sive open deep water. Dietz et al. (2014), for instance, reported

that in 2005 to 2008, taggedwalruses departedWestGreenland in
April and May and traversed an average distance of 338 km
across the Davis Strait to southeastern Baffin Island over an

average of 7 days. The combination of varying ice coverage, both
seasonal and interannual, and migration thus confound estima-
tion of absolute area subject to foraging.

What do walruses eat? Although authors have reported
walruses to eat fish, holothurians, polychaetes, brachiopods,
and even birds (Fisher & Stewart 1997, Higdon & Stewart

2018), a general consensus is that clams and gastropods form
most of the diet under normal foraging (Fay 1982, Fisher &

Stewart 1997, Ray et al. 2006, Sheffield & Grebmeier 2009,
Noren et al. 2012, NAAMCO 2017). Fisher and Stewart (1997)
examined stomach contents of Atlantic walruses taken by Inuit
hunters in July 1987 and 1988 (n ¼ 105) and September 1988

(n ¼ 2). In July, 20 of 94 stomachs from immature and adult
walruses contained greater than 5 g of food. Bivalves dominated
the diet quantitatively—the clams Mya truncata (Linnaeus,

1758) and Hiatella arctica (Linnaeus, 1767) contributed 81.4%
and 7.5% of the total gross energy, respectively, in the diet.
Holothurians and the polychaete Nereis sp. contributed 3.5%

and 2.8%, respectively, of the total. Male and female walrus
diets were similar, except that females received a significantly
(P < 0.05) greater percentage of gross energy from H. arctica
than did males. Walruses less than 3 y old consumed mostly

milk. September data suggested that walruses may feed more
intensively in the fall; M. truncata remained the predominant
prey, at 59.9% of total gross energy, with Serripes groenlandicus

(Mohr, 1786), at 37.9%, replacing H. arctica, at 0.3%, as the
second most important prey item. Sheffield and Grebmeier
(2009) reviewed stomach content data for 798 Pacific walruses

collected between 1952 and 1991 and considered the effect of
digestion bias on results. Despite this acknowledged challenge,
molluscs remained dominant food items, with bivalves pre-

dominating in Bering Sea collections and gastropods predom-
inating in Chukchi Sea collections.

Noren et al. (2012) developed a bioenergetic model for es-
timating food requirements of female Pacific walruses. The

model accounts for maintenance, growth, activity, molt, and
reproduction. Estimated caloric requirements for nonrepro-
ductive females, 0–12 y old (65–810 kg), ranged from 16,359 to

68,960 kcal days–1 (74–257 kcal–1 kg–1) for years when sea ice is
readily available as a platform from which the walrus can for-
age. These values approximate to 7%–8% and 14%–19% of

body mass per day for 5- to 12- and 2- to 4-y-old walrus, re-
spectively. Noren et al. (2012) validate their estimates by com-
parison with earlier data from reports by Born et al. (2003), who
made field observations of feeding free-ranging Atlantic wal-

ruses. Born et al. (2003) observed clam consumption rates of
eight clams min–1 of dive cycle, with a diet composition of 72%
Mya truncata, 21% Hiatella arctica, and 7% Serripes groen-

landicus. The dietary needs to serve the energetic requirements
estimated by Noren et al. (2012) approximate to 3,200–5,960
clams day–1, or 1168,000–2,175,400 clams y–1!

For simplicity in the current estimation, the used mainte-
nance ration is in the range of 8% body mass day–1 for a 600 kg
adult (48 kg day–1, consistent with a nonlactating, nonpregnant

female) through 7% day–1 for a 1,250-kg adult (87.5 kg) that is
rounded to 50–90 kg day–1 for one walrus, or a range of
18,250–33,000 kg y–1 walrus–1. Assuming that 50% of the diet
is bivalves provides a consumption rate of 9,125–16,500 kg

clams y–1 walrus–1. A simple rounding to a low estimate of
10,000–15,000 kg clams y–1 walrus–1, a population of 200,000
walruses would consume 2.0–3.0 3 109 kg or 2.0–3.0 3 106

tonnes of clams each year. This is an extraordinary number and
is comparable to the walleye or Alaskan pollock Gadus chal-
cogrammus (Pallas, 1814) catches from the eastern Bering Sea of

0.9–1.5 3 106 tonnes y–1 for the 30-y period between 1970 and
2000 (Acuna & Kotwicki 2006)—pollock landings are the
largest of any single fish species in the United States. For
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comparison, the commercial landings of the surf clam Spisula
solidissima in the mid-Atlantic and Georges Bank regions for

the 10-y period between 2005 and 2015 varied in the range of
1.85–2.71 3 104 tonnes y–1 of meat (NEFSC 2017a). Landings
for the ocean quahogArctica islandica for the same location and
period varied in the range of 1.36–1.633 104 tonnes y–1 of meat

(NEFSC 2017b). Simply stated, annual walrus clam consump-
tion is two orders of magnitude higher than surf clam or ocean
quahog commercial landings.

The aforementioned major dietary species for walrus, Mya
truncata, Hiatella arctica, and Serripes groenlandicus, are all
circumpolar in distribution (MacNeil 1964, Carey et al. 1984,

Siferd & Welch 1992, Sejr et al. 2002, Ambrose et al. 2006,
Kilada et al. 2007, Carroll et al. 2009). All can demonstrate
considerable longevity and large terminal size. Foster (1946)
notes that M. truncata can reach 75 mm shell length (SL); the

siphon is not enclosed when retracted and canmore than double
the clam length when extended. Kilada et al. (2007) estimated a
maximum size of about 100 mm and age of about 30 y for S.

groenlandicus. Sejr et al. (2002) reported extreme longevity, up
to 126 y, for H. arctica with a maximum SL (von Bertalanffy
LN) of 37 mm at approximately 35 y of age. Longevity is

typically accompanied by rapid early growth transitioning to an
extended period of mid to late life with little additional
growth—the illustration in Figure 5 of Sejr et al. (2002) for H.

arctica providing an excellent example. This growth pattern has
implications for population-level production:biomass (P:B)
ratios (see also Cusson & Bourget 2005). The P:B ratios
provide a tool to relate standing stock and production. The P:B

ratios for bivalves are typically higher where life spans are
shorter (Zaika 1970) and during the early years of life for long
lived species. Dietary requirements of walruses have been esti-

mated earlier. Production must exceed these needs. Can P:B
ratios be used to estimate standing stock of bivalve prey species
in the regions of walrus foraging? Note that this conservative

approach discounts all other sources of mortality, so resultant
estimates of standing stock will be biased low.

A summary of P:B ratios in bivalve populations is given in
Table 1. The included habitats range from boreal lakes to high-

energy beaches, intertidal mudflats, and high-latitude fjords.
Although most examples are for populations with age struc-
tures limited to less than 10-y old, an extraordinary inclusion is

that of Sejr et al. (2002) for Hiatella arctica. Production:bio-
mass ratios vary between low values of 0.05 and 0.095 [Mer-
cenaria mercenaria (Linnaeus, 1758) fromWassaw Sound USA

andH. arctica from Greenland, respectively] and high values of
greater than 2.5 [Scrobicularia plana (da Costa, 1778) and Mya
arenaria (Linnaeus, 1758) from the United Kingdom and Nova

Scotia, Canada, respectively]. Low values tend to be reflective of
populations of old animals and higher latitudes, whereas high
values tend to be reflective of younger animals, although there is
considerable variation driven by local productivity. Of these

reports, only a few share comparable annual temperature
ranges, latitudes, and depths to the foraging range of walruses.
The genus Mya is represented in both these P:B ratios and

walrus diet reports, albeit for differing species. In addition, the
aforementioned report by Petersen (1978) and Sejr et al. (2002)
reports on Serripes groenlandicus (P:B ¼ 0.1–0.13), Hiatella

byssifera (Fabricius, 1780) (P:B ¼ 0.15), Mya truncata (P:B ¼
0.15–0.17), and Macoma calcarea (Gmelin, 1791) (P:B ¼
0.16–0.33) from Disko Bay, West Greenland. Mid-latitude

populations of shallow water or intertidal populations of
Cerastoderma edule (Linnaeus, 1758), S. plana, M. mercenaria,

Astarte borealis (Schumacher, 1817), M. arenaria, and Rudi-
tapes philippinarum (Adams & Reeve, 1850) provide examples
with P:B ratios in the 0.2–0.5 range. Higher values of P:B ratios
are typified by mostly short-lived species in productive habitats

at lower latitudes. Brey andClarke (1993, Figure 3) compare the
logarithm of annual P:B ratio versus mean individual body
mass for a suite of polar benthic invertebrate species, including

both bivalves and gastropods, and note a general common re-
gression with a negative slope of –0.219, closely resembling the
expected value as described by earlier investigators (Platt &

Silvert 1981, Feldman & McMahon 1983, Calder 1985).
The Chukchi Sea is considered to support a highly productive

and diverse benthic community (Schonberg et al. 2014) that, in
turn, supports higher-level megafauna. Similarly, the microbe-

nthic assemblages in the northern Bering Sea are attributed to
local high primary productivity and flux to the benthos
(Grebmeier et al. 1988, 1989). McCormick-Ray et al. (2011) em-

phasized both the abundance and patchy distribution of small
(<1.0 cm) bivalves on the Bering Sea shelf. The abundance of
small-size classes suggests either rapid turnover of the population

with high predation balanced by high recruitment and/or a bias in
sampling that discounts larger, more-sparse individuals [compare
the size distribution in McCormick-Ray et al. (2011) with maxi-

mum sizes for predominant food items as described earlier].
Reports describing abundance of large clams on Arctic

shelves are not well ensconced in the literature—should they be?
Descriptions of the benthic communities are a function of the

gear used to sample them (Powell & Mann 2016, Powell et al.
2017). Is the latter problematic in the current context? Tradi-
tional grabs, widely used in studies of Arctic benthos, rarely if

ever collect a large bivalve because of either the limitations of
depth penetration of the gear or the area enclosed by the sample
when the mean density of the target organisms approximates

1 m–2 at highest densities. Examples of the latter include swept
area population estimates from stock assessment of the surf
clam Spisula solidissima (Dillwyn, 1817) on the mid-Atlantic
shelf of the United States (Weinberg 2005, Hennen et al. 2012),

the Pacific geoduck Panopea generosa (A. A. Gould, 1850)
(Goodwin & Pease 1989), and density estimates of 1–2 m–2 of
Mercenaria mercenaria in exploited populations in Great South

Bay, NY (Kraeuter et al. 2005). In a survey of the standing stock
of Spisula polynyma [now Mactromeris polynyma (Stimpson,
1860)] along the southeastern Bering Sea, Hughes and Bourne

(1981) estimated approximately 330,000 tonnes of biomass in the
6,800 km2 surveyed area, which translates to approximately 0.2
clams m–2. To survey this high biomass, large-bodied but rela-

tively sparse clam, Hughes and Bourne used a hydraulic dredge,
the necessary gear type for a species like this (Powell & Mann
2016). In addition, some, large infaunal bivalves can dig deep into
the sediments and close their valves [extreme examples include

Arctica (Taylor 1976), Tagelus (Frey 1968), Ensis (Winter et al.
2012), and, in the current context, Mya (Zaklan & Ydenberg
1997)], thus escaping surface sampling. Large bivalves provide

the extreme condition of biomass dominants that might be in-
correctly underestimated based on ineffective sampling gear and/
or sampling design. Standing stocks of walrus food species are

thus likely to be underestimated by standard approaches.
If P:B ratios are used to estimate minimum standing stock

required to support walrus feeding, then what P:B ratio should
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be applied? Based on the aforementioned, values in the range of

0.1–0.5 are reasonable. When applied to a consumption rate of
2.0–3.0 3 106 tonnes y–1, a conservative estimate of required
standing stock is 2.0–3.0 3 107 tonnes (at P:B ¼ 0.1) to

0.4–1.5 3 107 tonnes (at P:B ¼ 0.5). Again, these are extraor-
dinary numbers. To place them in context, the commercially
exploited surf clam Spisula solidissima and ocean quahog Arc-

tica islandica (Linnaeus, 1767) stocks of the mid-Atlantic and
Georges Bank region of the U.S. eastern continental shelf have
standing stocks approximating to 1.0 3 106 tonnes (Hennen,

NEFSC, personal communication 2020) and 3.6 3 106 tonnes

(NEFSC 2017b Figures 108, 109, 111), respectively.

BIVALVES AS CARBONATE RESERVOIRS ON THE ARCTIC

CONTINENTAL SHELVES

Shell is released by walrus feeding.What are the implications

of walrus feeding on bivalve prey for the regional carbonate
budget? Table 2 summarizes shell:wet meat ratios for bivalves;
ratios range between 1.08:1 and 4.2:1. Taking 2:1 as a working

TABLE 1.

Production:biomass (P:B) ratios for bivalve molluscs estimated from annual production (P) and standing stock (B) values unless
otherwise stated.

Species Location P:B Age (y)

SL max

(mm) Source

Mercenaria mercenaria Wassaw Sound, GA 0.05 >7 – Walker and Tenore (1984)

Hiatella arctica Young Sound, NE Greenland 0.095 #126 – Sejr et al. (2002)

Serripes groenlandicus Disko Bay, West Greenland 0.1–0.13 – – Petersen (1978)

Modiolus demissus Georgia 0.11 #7–8 – Kuenzler (1961)

M. mercenaria Little Tybee, GA 0.14 >7 – Walker and Tenore (1984)

Hiatella byssifera Disko Bay, West Greenland 0.15 – – Petersen (1978)

Venerupis pullastra Norway 0.15 – – Johannessen (1973)

Mya truncata Disko Bay, West Greenland 0.15–0.17 – – Petersen (1978)

Macoma calcarea Disko Bay, West Greenland 0.16–0.33 – – Petersen (1978)

M. mercenaria Southampton, England 0.17–0.52 – – Hibbert (1976)

Cerastoderma edule Intertidal, Lynher estuary, Cornwall,

England

0.2 – 41.6 Warwick and Price (1975)

Scrobicularia plana Intertidal, Lynher estuary, Cornwall,

England

0.2 – – Warwick and Price (1975)

M. mercenaria North Cabbage Island, GA 0.23 #7 – Walker and Tenore (1984)

Anodonta grandis

simpsoniana

Narrow Lake, Central Alberta, Canada 0.25 #11 69 Hanson et al. (1988)

Venerupis decussata Southampton, England 0.28–0.52 – – Hibbert (1976)

Astarte borealis S.E Baltic Sea 0.41 #8 21 Gusev and Rudinskaya (2014)

Lissarca notorcadensis Weddell Sea Shelf, Antarctica 0.42–0.444 – – Brey and Hain (1992)

Ruditapes philippinarum Intertidal, Arcachon Basin, SW France 0.44–0.92 – – Dang et al. (2010)

Mya arenaria Intertidal, Lynher estuary, Cornwall,

England

0.5 #8 107 Warwick and Price (1975)

Lissarca miliaris Signy Island, Antarctica 0.78 – – Richardson (1979)*

Mytilus galloprovincialis Black Sea 0.91† #7–9 – Zaika (1970)†

Macoma balthica Grevelingen estuary, Netherlands 0.95 – – Wolff and de Wolff (1977)

M. balthica Intertidal, Lynher estuary, Cornwall,

England

0.95 #7 – Warwick and Price 1975)

Cardium edule Southampton, England 1 – – Hibbert (1976)

Mytilus edulis Southampton, England 1 – Hibbert (1976)

Venerupis aurea Southampton, England 1.0–1.11 – – Hibbert (1976)

Cerastoderma edule Southampton, England 1.1–2.61 – – Hibbert (1976)

Donax serra High-energy beach, Namibia 1.167–1.589 – 82 Laudien et al. (2003)

Cardium edule Grevelingen estuary, the Netherlands 1.5 – – Wolff and de Wolff (1977)

M. balthica Nova Scotia, Canada 1.53 – – Burke and Mann (1974)

Abra ovata Sea of Azov 1.6 #3–4 – Zaika (1970)‡

Tellina tenuis Loch Ewe, Scotland 1.75 <5 – Trevallion (1971)

M. balthica Ythan Estuary, Scotland 2.07 – – Chambers and Milne (1975)

Cardium edule Sea of Azov 2.24‡ #5 – Zaika (1970)

Mytilaster lineatus Sea of Azov 2.25‡ #3 – Zaika (1970)

S. plana Intertidal, Conwy Bay, Wales 2.5 #4 – Hughes (1970)

M. arenaria Nova Scotia, Canada 2.54 – – Burke and Mann (1974)

Population age and maximum individual SL (mm) where available. Cardium edule and Cerastoderma edule are synonyms.

* Quoted in Brey and Clarke (1993).

† Estimated from daily production rates 3365.

‡ Based on 7 mo of production.
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estimate, the aforementioned estimates of clam biomass con-

sumed as wet tissue weight correspond to shell carbonate release
rates on the order of 4.0–6.03 106 tonnes y–1. This carbonate is
either released into the buried carbonate pool or remobilized

through dissolution. In either case, for a time, this carbonate
must be an important contributor to buffering of near-surface
sediments in the Arctic regions. Estimates of release of benthic

carbonate are few in the literature. Smith (1972) reports loss of
approximately 4.03 104 tonnes y–1 of biogenic carbonate from
hard-bottom communities of coralline algae, bryozoan, mol-
luscs, arthropods, and annelids in approximately 103 km2 of the

shallow shelf region off southern California. Lebrato et al.
(2010) provided an estimate of global echinoderm carbonate
production, from the shallows to the abyss, of approximately

109 tonnes y–1. There are no comparable regional or global es-
timates for molluscan carbonate production.

What is the nature and dynamics of the bivalve carbonate

reservoir? Although death assemblages commonly contain a
range of small molluscs, these size classes (and species) often are
poorly preserved (Cummins et al. 1986a, Callender & Powell

2000, Smith & Nelson 2003) and contribute disproportionately
little carbonate in comparison with their abundance. Is this the
case on theArctic shelf? The importance of the larger bivalves in
estuarine soft-bottoms and hard grounds in maintaining filter-

feeder prominence in community dynamics is supported by a
range of studies (Cloern 1982, Peterson 1984, Staff et al. 1985,
Coco et al. 2006, Fulford et al. 2007, Smaal et al. 2019). In fact,

the amensalism hypothesis3 developed to explain the dichotomy
of filter-feeder versus deposit-feeder communities first pro-
moted by Rhoads and Young (1970) and Young and Rhoads

(1971) (see also modifications by Wildish 1977, Probert 1984)
may be as much a dynamic of insufficient carbonate content to
promote bivalve settlement as it is the inability of bivalves to
feed in unstable sedimentary environments. Notably, many

locales with well-documented seasonal sediment-transport cy-
cles sustain significant bivalve populations (Anderson et al.
1981, Cummins et al. 1986c, Reise et al. 2008).

In estuaries, where taphonomic loss rates may be intense
(Cummins et al. 1986b, Powell et al. 1989, Simon et al. 1994,

Waldbusser et al. 2011), high rates of carbonate production are

essential to maintain a favorable sedimentary environment for
early survival of juveniles; however, exceptions have been re-
ported wherein high preservation occurs (Powell et al. 1992).

Stability of the carbonate pool by the presence of large bivalves
may not always be necessary, but is highly advantageous
(Powell & Klinck 2007, Mann et al. 2009). Although high re-

cruitment with short life expectancy can contribute substan-
tially to the carbonate pool if maintained at high rates, such
dynamics are at the mercy of failed year classes in a recruitment
sequence. Small valves are thinner and susceptible to chemical

degradation and physical breakage—residence time in the car-
bonate pool is short (e.g., Powell et al. 1984, 1986, Cummins
et al. 1986a, Tomašových 2004). Life histories dominated by

short life spans and variable recruitment proffer unstable car-
bonate pools with cascading impacts on the broader benthic
invertebrate community. Carbonate loss rates within the sedi-

ment surface mixed layer may, however, demonstrate a rapid
(disintegration) loss phase followed by a lower (sequestration)
rate phase that maintains carbonate presence over extended

time periods (Tomašových et al. 2014). The presence of long-
lived species with large terminal size is the desired scenario
(discussed for oysters by Mann & Powell 2007, Powell et al.
2012, Soniat et al. 2012); however, the reported abundance of

small, presumably young individuals indicates a leaning toward
a less-stable environment for continued recruitment.

Likely, taphonomic rates are lower on continental shelves,

although data are meager at present (Powell 1992, Flessa &
Kowalewski 1994, Smith & Nelson 2003); thus, carbonate
content is sustained in part by a benign taphonomic environ-

ment. All else being equal, taphonomic rates should rise in
colder high-latitude waters based on the influence of tempera-
ture on carbonate saturation state and the expected effect of
ocean acidification that is anticipated to further expose this

sensitivity (Fabry et al. 2009, McClintock et al. 2009). Thus,
high bivalve carbonate production may be critical to mainte-
nance of habitat and community health in estuaries and north-

temperate to Arctic environs: what large and long-lived bivalves
are the major contributors to this carbonate resource?

The role of bivalve molluscs in providing ecosystem services,

effecting bioturbation to facilitate elemental cycling, and modu-
lating benthic–pelagic coupling is well documented (Loo &
Rosenberg 1989, Gerritsen et al. 1994, Peterson et al. 2003,

TABLE 2.

Shell:meat wet weight ratios for bivalve molluscs.

Species Size range Location Ratio Source

Cardium edule 22–32 mm SL, 4–14 g live weight Burny Inlet, South Wales 4.21 Hancock and Franklin (1972)

Cerastoderma edule 20–50 mm from regressions Southampton, UK 4.16*† Hibbert (1976)

Donax vittatus 28 mm ‘‘standard animal’’ Kames Bay, Scotland 1.49 Ansell (1972)

Macoma balthica 6–20 mm SL from regression Georgetown, ME 1.26–1.47* Gilbert (1973)

Tapes japonica 6–10 g live weight Cultured/experimental 1.1–2.57† Mann (1979)

Tellina tenuis 6–22 mm, 15 mm ‘‘standard animal’’ Kames Bay and Firemore

Bay, Scotland

1.08 Ansell and Trevallion (1967)

Venerupis aurea 20–50 mm from regressions Southampton, UK 2.22–4.04 *† Hibbert (1976)

* Values calculated from regressions of weight versus length in source publications.

†Wet meat estimated from dry meat assuming 78% water content (Southworth and Mann, unpublished oyster data; also Ansell (1972) for Donax

vittatus, range 75%–85%).

3Amensalism is the interaction between two species wherein one of

them, without being affected, impedes the growth and survival of the

other.
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Coen et al. 2007, Smaal et al. 2019). In tropical waters, coral reefs
are the dominant reservoir of carbonate to neutralize acid pro-

duction (Milliman 1974, Mallela & Perry 2007, Kleypas & Yates
2009, Burdige et al. 2010). In temperate to boreal waters, the
major carbonate reservoirs are molluscan shells and to a lesser
extent echinoderm tests (Chauvaud et al. 2000, Gutiérrez et al.

2003, Lebrato et al. 2010). Filter-feeding bivalves dominate this
carbonate pool because most are primary consumers. In the
geologically ephemeral estuarine regions of continental margins,

carbonate production serves to build and maintain oyster reefs
(Mann & Powell 2007, Powell & Klinck 2007, Mann et al. 2009,
Powell et al. 2012). These are critical biological habitats that ac-

crete in concert with sea level (Mann et al. 2009, Powell et al.
2012).

Appreciation of the role of molluscs as carbonate (alkalinity)
reservoirs in the soft-bottom benthos has received less attention

(Mann& Powell 2007, Powell &Klinck 2007, Powell et al. 2012,
Waldbusser et al. 2013). As primary productivity falls to the
benthos and decays, acids are formed. These are buffered by

carbonate at the sediment–water interface or in near-interface
sediments (Tribble 1993, Green & Aller 1998, Green et al. 2004,
Perry & Taylor 2006). Lack of such buffering has been observed

to impact the survival of Mercenaria mercenaria (Green et al.
2004), and the burrowing and post-settlement behavior ofMya
arenaria (Clements et al. 2016) with obvious extension to other

juvenile infauna. In most of the soft-sediment benthic habitats,
carbonate production must balance taphonomic loss to main-
tain the chemical milieu of the near-surface sediments to
sustain a filter-feeding component in the benthic community.

The vast majority of marine invertebrates, including bivalve
molluscs, have ciliated larvae that metamorphose at a maxi-
mum dimension of less than 1 mm—Reynolds numbers dictate

that anything larger could not swim with cilia because of fluid
dynamic restrictions of viscosity (Vogel 1994,McEdward 1995).
Metamorphosing larvae have very high surface:volume ratios,

making them susceptible to dissolution (Sanders 2003, Green
et al. 2004, Miller et al. 2009). In addition, they are incapable of
extensive osmoregulation. Thus, critical enzyme systems for

early post-metamorphosis are susceptible to environmental
challenge if internal pH cannot be regulated within a narrow

optimal ‘‘window.’’ As a result, buffering of the sediment–water
interface is critical to successful metamorphosis and early juv-
enile survival at the individual organism level (Green et al. 2009,
2013) and the maintenance of diversity at the community level.

The only widespread exception to this general scenario is lotic
beaches where the ‘‘high-energy window’’ maintains a chemi-
cally benign environment (Ott & Machan 1971, Riedl 1972,

Riedl & Machan 1972).

CONCLUSION

A disconnect exists between the molluscan biomass estimated
from known benthic surveys and the feeding requirements of
walruses. This suggests that either the food requirements of

walruses are vastly overestimated, the diet of walruses is sub-
stantively misunderstood, or the benthic surveys vastly under-
estimate continental shelf molluscan biomass. The last is likely

the case and is a primary obstacle worldwide in managing con-
tinental shelves and understanding the reorganization of benthic
communities during a period of global warming. The walrus

underscores a missing and very important piece of the benthic
community puzzle that might substantively reshape the view of
continental shelf soft-bottom benthic communities and the car-

bonate budgets associated with them, wherein carbonate se-
questration rates may be occurring at rates much higher than
presently appreciated.
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