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Outcomes of asymmetric selection pressure and
larval dispersal on evolution of disease resistance:
a metapopulation modeling study with oysters
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John M. Klinck?

IHaskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Ave., Port Norris, NJ 08349, USA
2Gulf Coast Research Laboratory, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, USA

3Center for Coastal Physical Oceanography, Department of Ocean, Earth and Atmospheric Sciences, 4111 Monarch Way,
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ABSTRACT: Marine diseases are a strong selective force that can have important economic and
ecological consequences. Larval dispersal patterns, selective mortality and individual growth
rates can modulate metapopulation responses to disease pressure. Here, we use a modeling
framework that includes distinct populations, connected via larval transport, with varying disease
selection pressure and connectivity to examine how these dynamics enhance or inhibit the evolu-
tion of disease resistance in metapopulations. Our system, oysters and MSX disease, is one in
which disease resistance is highly and demonstrably heritable. Simulations show that under con-
ditions of population isolation (i.e. local retention of larvae) and strong disease selection, popula-
tions rapidly evolve genetic disease resistance. Varying the patterns of larval dispersal alone dou-
bles the time for evolution of disease resistance. Spatially varying disease in the absence of larval
dispersal leaves some populations unable to respond to the disease, whereas adding larval disper-
sal slows the response of populations under strong selection and speeds the response in popula-
tions under low selection when fitness is based on relatively limited genetic structure (‘juvenile
fitness’ in our simulations). Under spatially variable disease pressure, larval dispersal generates a
fourfold greater variance in fitness outcomes across the dispersal patterns tested. In a meta-
population, populations experiencing lower selection pressure will tend to slow the development
of other, more heavily selected populations. This suggests that conservation efforts aimed at
improving overall metapopulation resistance in the face of marine diseases should target those
populations under modest or high disease pressure, rather than protecting those experiencing low

selective pressure.

KEY WORDS: Larval dispersal - Metapopulation dynamics - Connectivity - Disease - Oyster -
Resistance - Structured population model - Genetic adaptation - Evolution

INTRODUCTION

Marine diseases are a strong selective force in the
world's oceans, and can have significant and long-
lasting economic and ecological consequences (Burge
et al. 2014, Lafferty et al. 2015). Oyster diseases in-
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cluding MSX (Ford & Tripp 1996, Ford & Bushek
2012), dermo (Ragone Calvo et al. 2003, Bushek et al.
2012), OsHV-1uVar (=oyster herpesvirus) infection
(Segarra et al. 2010, Paul-Pont et al. 2014) and Roseo-
varius (=juvenile) oyster disease (Davis & Barber
1999, Maloy et al. 2007) have caused high mortality in
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wild-harvested and aquacultured populations, which
has translated into major economic and ecological
losses (Mann et al. 2009, Lafferty et al. 2015). Exam-
ples of catastrophic disease mortality can also be
found in crustacean fisheries (Shields 2012, Lafferty et
al. 2015) as well as in other taxa such as abalone
(Friedman et al. 2014, Lafferty et al. 2015), echino-
derms (Scheibling & Hennigar 1997) and corals (Pat-
terson et al. 2002, Kim & Harvell 2004), where massive
die-offs have been associated with disruption of eco-
logical functioning (Altizer et al. 2003, Miner et al.
2006). The economic and ecological consequences of
disease in these open (dispersive) populations illus-
trates that a greater understanding of the mechanisms
and rates of possible development of genetic resist-
ance to disease at a metapopulation level would im-
prove management and mitigation of losses.

The rate at which evolution of resistance occurs is
controlled jointly by the strength of selection for sur-
vival (Kingsolver et al. 2001), the heritability of resist-
ance (Fisher 1930) and the degree of genetic connec-
tivity between a given population and others under
various selection pressures (Sanford & Kelly 2011).
Spatially variable selective pressure within a meta-
population may drive genetic divergence among sub-
populations experiencing different levels of selec-
tion (Feng & Castillo-Chavez 2006, Dégremont et al.
2010). Alternatively, in cases where a selection (dis-
ease) refuge exists spatially (Hofmann et al. 2009,
Bushek et al. 2012) or temporally (Harding et al. 2005,
Powell et al. 2012), development of genetic resistance
in the metapopulation could be inhibited (Ford et al.
2012) through continual input of unselected genotypes
from refuge areas. This genetic connectivity among
subpopulations via larval dispersal creates a homoge-
nizing influence that tends to mix selected and unse-
lected genotypes and slow the influence of local selec-
tion pressure (Sanford & Kelly 2011). Thus, we may
predict that species with high rates of dispersal should
display lower spatial genetic structure and relatively
slow evolution of resistance. In practice, this has not
been demonstrated as clearly as would be expected
(Weersing & Toonen 2009, Selkoe & Toonen 2011); in
fact, the only clear pattern that exists regarding
pelagic larval duration and genetic structure is the
null pattern that species with direct development (i.e.
no larval dispersal) have high spatial genetic structure
(Weersing & Toonen 2009, Kelly & Palumbi 2010).
Larval dispersal of varying pelagic duration creates
genetic mixing; however, the specific relationship
between larval duration and evolution of disease re-
sistance within spatially structured metapopulations
remains unclear.

Metapopulations consist of any number of open
subpopulations connected by larval dispersal, and
have local selective pressures that are heteroge-
neous in time and space (Kritzer & Sale 2004). This
variability has the potential to create uncertainty in
metapopulation response to selection. Observation
of, and experimentation with, these processes of
selection pressure and genetic response on an eco-
logically relevant scale are challenging if not impos-
sible to fully execute. One hindrance for experimen-
tation is that direct observation of larval dispersal
presents a number of challenges (Piggott et al. 2008,
White et al. 2010). Increasingly, connectivity matrices
generated from biophysical models are being used to
predict larval dispersal in marine metapopulations
(North et al. 2008, Haase et al. 2012, Narvdez et
al. 2012a,b). These connectivity patterns have been
used to successfully predict population genetic struc-
ture in coral reef metapopulations, allowing direct
comparisons between simulated and empirical genetic
patterns (Galindo et al. 2006, Kool et al. 2011, Foster
et al. 2012); however, these studies used neutral alle-
les and thus failed to include the effect of selection in
their calculations. The combined influence of spa-
tially varying selective pressure and larval dispersal
(connectivity) is more complex, but has important
consequences for adaptation and evolution (Sanford
& Kelly 2011).

For more than half a century, eastern oysters Crass-
ostrea virginica have been affected by MSX disease,
caused by the protozoan pathogen Haplosporidium
nelsoni. Eastern oysters have shown the ability to
rapidly develop resistance to disease and mortality
caused by H. nelsoni in both ‘common garden' field-
challenge experiments (Haskin & Ford 1979, Ragone
Calvo et al. 2003) and in wild populations (Ford et al.
2009, 2012). In the Delaware estuary, a large portion
of the oyster population is managed as a state fishery
(Powell et al. 2011a) and annual quantitative assess-
ments have provided a detailed account of population
abundance and disease prevalence from 1953 until
the present day (Ford & Haskin 1982, Powell et al.
2008). H. nelsoni is intolerant of low salinity and
therefore the strong salinity gradient that exists in
the Delaware estuary generates a corresponding dis-
ease gradient (Ford & Bushek 2012, Powell et al.
2012) such that oyster populations in the upper estu-
ary (low salinity) experience lower disease pressure,
whilst lower estuary populations in higher salinity
experience higher disease pressure. The salinity gra-
dient in the estuary creates a corresponding gradient
in oyster growth, such that growth is faster in higher
salinity (Kraeuter et al. 2007). It is as yet uncertain
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how these environmentally-driven spatial gradients
in disease pressure and oyster demographics, in com-
bination with variable larval dispersal (Narvaez et al.
2012a) influence the evolution of disease resistance.

Here, we investigate the hypothesis that spatially
varying disease selection, local demography and
larval dispersal influences metapopulation genetic-
connectivity dynamics and the evolution of disease
resistance using a framework that includes an indi-
vidual-based model that simulates an eastern oyster
metapopulation. We parameterized the model using
the comprehensive long-term data from oyster fish-
ery stock assessments in the Delaware estuary (Pow-
ell et al. 2011a) and historical data on the oyster stock
response to MSX disease pressure (see Hofmann &
Ford 2012 and other papers in the same volume for
an overview). The modeling framework includes dis-
tinct populations that can be manipulated by varying
levels of selective disease pressure and connectivity
via larval transport.

MATERIALS AND METHODS
The model

The Dynamic Population Genetics Engine (DyPoGEn)
(Munroe et al. 2012, 2013a,b, Powell et al. 2011b,c) is
a numerical model that simulates the genetic struc-
ture and population dynamics of a metapopulation.
We parameterized the model to simulate a metapop-
ulation containing 4 connected populations of east-
ern oysters Crassostrea virginica in the Delaware
estuary (Fig. 1). In the model, each simulated popula-
tion is composed of multiple cohorts of oysters whose
populations interact via larval dispersal. Larvae (off-
spring) are created annually from parent pairs via
independent assortment of parental genotypes to
simulate meiosis and random egg fertilization. The
larvae produced in each population can remain
within the source population (local retention, sensu
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Fig. 1. Locations and depths (m) of eastern oyster Crassostrea

virginica populations in Delaware estuary used in model

simulations. Inset shows location of fished beds in Delaware

estuary, and the Delaware estuary on the Atlantic Coast of
the USA. Map modified from Munroe et al. (2013c)

Hogan et al. 2012) or disperse to any of the other pop-
ulations, in which the conditions for growth and sur-
vival can differ. No larvae are lost from the system,
and all are constrained to settle within 1 of the 4 pop-
ulations. The general characteristics of each popula-
tion are given in Table 1.

DyPoGEn has 3 basic components: (1) a post-settle-
ment population dynamics sub-model that contains
parameterizations for growth, mortality and repro-
duction; (2) a larval sub-model that contains parame-
terizations for larval mortality, larval exchange and
early juvenile survival and (3) a gene sub-model that
describes each individual in terms of its genetic
structure to which differential fitness and survival

Table 1. Characteristics for each of the 4 eastern oyster Crassostrea virginica populations used in the metapopulation
simulations, based on recently observed dynamics in the fished oyster stock in Delaware estuary (2000 to 2010). ND: no data

Population

1 2 3 4
Abundance (millions of oysters)® 492 395 868 197
Average adult natural mortality rate® 8% 10 % 16 % 26 %
Natural juvenile mortality rate® NDP 8% 23% 47 %
von Bertalanffy growth parameters (k/ L..)¢ NDP 0.175/110 0.26/125 0.23/140
aFrom Powell et al. (2011a); "ND: L., estimated from stock assessment data?; juvenile mortality and k assumed equal to
Population 2; “From Kraeuter et al. (2007): L.. in mm, kin yr!
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probabilities can be applied to individual genotypes.
Additional details of the single population model
structure and formulation (on which our metapopu-
lation model is based) are given in Powell et al.
(2011b,c). The model processes, including specifica-
tions for growth, reproduction and mortality, have
been described previously (see Munroe et al. 2012,
2013a,b), and population abundances in the model
were maintained high enough to minimize the influ-
ence of genetic drift. In this study, we include a geno-
type—phenotype interface that interprets individual
genotypes in terms of fitness, which then influences
the post-settlement sub-model. This permits the feed-
back between genotype and phenotype that allows
for selection. For brevity, we describe only those
novel components of the model that were previously
undescribed, and the mechanisms by which the pre-
viously described model processes are influenced by
the genotype—phenotype interface.

Post-settlement population dynamics

MSX disease is thought to cause oyster mortality in
2 ways (Ford et al. 1988). The first is by high and
rapid mortality of naive individuals, and the second is
a result of prolonged (chronic) disease in individuals
that have experienced selection but are still carrying
the parasite (Ford 1985, Ford & Haskin 1987, Ford
et al. 1988, 1999). For the purposes of the present
model, this difference is imposed on populations such
that juveniles are considered naive and therefore ex-
perience high, rapid mortality, whereas adults (having
survived initial mortality episodes) experience lower,
chronic exposure mortality. Thus, the probability of
mortality of an individual oyster (Pyort) is calculated
as the combined probability of juvenile mortality
(PJuvMort) and adult mOTtaﬁtY (PAdultMort):
Buort = PruyMort + PadultMort (1)

where Py mort 1S calculated as:
Prurort = 0.3+ (1-FitFacJuv) x dJuvMort 0973 xAge (2

and Pagumnmort depends on the age of the animal (Age,
in years) as follows:

3)
Age—[18—((1-FitFacAdult) x dAdultMort)]

0.5 {1 + tanh( -
9 - ((1-FitFacAdult) x dAdultSpreadMort)

The probability of mortality is modulated by the
individual's age and fitness (FitFac). For young oys-
ters, FitFacJuv generates an increasing probability of
mortality relative to the genetic disease resistance

of an individual at a given age as dJuvMort (which
varies from 0 under conditions of low disease pres-
sure to 2.2 in high disease pressure; Fig. 2A); how-
ever, as age increases, the probability of mortality
decreases (Fig. 2A). In older oysters, FitFacAdult
specifies a probability range of mortality depend-
ing on the degree of genetic disease resistance as
dAdultMort (varies from 0 in low disease pressure to
17.8 in high disease pressure) and dAdultSpread-
Mort (varies from O in low disease pressure to 6 in
high disease pressure). Likewise, for oysters older
than approximately 3 yr, as age increases, the proba-
bility of mortality increases (Fig. 2A).

Genetic structure and fitness
Definition of fitness

Fitness is often defined as the number of reproduc-
ing offspring that a parent produces (Charnov et al.
2007). Only a small fraction of an oyster population
spawns successfully, and many recruits fail to spawn
successfully before they die. Whether a recruit will
reproduce is controlled by its growth rate, which
controls lifetime spawning potential by influencing
size-at-age (e.g. Galvani & Slatkin 2004) and the age-
dependent mortality rate. Size-at-age in the model
is assigned using a von Bertalanffy relationship
(Kraeuter et al. 2007). In this study, age-dependent
mortality is influenced by selection. For simplicity,
we use modifiers to the term ‘fitness’ to refer to 3 sub-
sets of this overall process. The term ‘juvenile fitness’
refers to the genetic complement of any oyster with
an age <3 that influences the probability of death,
whereas ‘adult fitness' refers to the genetic factors
that influence the probability of death at age 3 or
greater. The term 'population fitness' refers to the
arithmetic average of the fitness values for the indi-
viduals in the population.

Most models of genetically based disease resist-
ance rely on 1-locus (e.g. MacKenzie & Bishop 1999,
Abell et al. 2005) or 2-loci (e.g. Galvani & Slatkin
2004) configurations. DyPoGEn permits simulations
using many loci. In this formulation, we can arbitrar-
ily assign a designation of A for the allele conferring
disease resistance and B for the alternative allele;
therefore an individual that is AA at a given loci is
homozygous resistant. Ximing Guo, from the Haskin
Shellfish Research Laboratory at Rutgers University,
identified 15 loci with alleles that may confer some
degree of resistance to mortality from MSX disease
(X. Guo unpubl. data). These loci were identified
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mined that the observed selection for
MSX disease resistance in juveniles
could not be simulated appropriately
unless selection in juveniles was influ-
enced by only a single, highly influen-
tial locus; consequently, we assigned
the locus with the strongest selection
(i.e. the largest differential between
AA and AB genotypes) to juvenile
fitness (Table 2). The remaining 14

Probability of Mortality for Oysters with Fitness

02 —— High Disease

—— Medium High Disease
Medium Low Disease
Low Disease

loci were assigned to alleles associ-
ated with adult fitness, consistent with
1 Guo's observations of the number of

. loci involved. Further support for the

assignment of multiple loci to adult
fitness is found in the observation of

slower development of disease re-
sistance in later generations of se-
lection (Haskin & Ford 1979). The
decreasing rate of disease resistance
development is most easily explained
by a multiple locus selection process
(e.g. Powell et al. 2012). For the pur-
poses of this study, the importance of
this information is to establish (1) that

m— Fitness = 0

= Fitness = 0.2
= Fitness = 0.4
= Fitness = 0.6

selection pressure for survival through
early life stages of a naive stock is

strong, (2) that a large number of loci
may be involved in the adult selection

Fitness = 0.8
Fitness = 1
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Age

Probability of Mortality for Oysters Under High Disease Pressure

Fig. 2. Probability of mortality for an individual eastern oyster Crassostrea

1'8 S process and (3) that these loci are
distributed among the majority of the
chromosomes (Table 2).

virginica as the oyster ages, showing how the probability changes (A) hold-
ing fitness constant at 0.4 but varying disease pressure, and (B) with age of

the oyster, holding disease constant (high) but varying fitness

as having significant shifts in genotype frequency
within families after being exposed to MSX disease-
caused mortality. Some of these alleles may confer a
greater increment in survival than others; however,
the data currently available are insufficient to pro-
vide more than a ranking of selection pressure asso-
ciated with each allele. Which loci influence juvenile
mortality and which modulate adult mortality is also
unknown. Based on evidence from multiple selection
trials using laboratory-produced cohorts, Haskin &
Ford (1979) suggested that a single locus, randomly
distributed within the population could be responsi-
ble for evolution of MSX disease resistance. Using
data obtained from previous disease selection exper-
iments, which demonstrated strong selection during
the first (juvenile) year of exposure of naive stocks
(Haskin & Ford 1979, Ford & Haskin 1987), we deter-

Genotype—phenotype interface

The genetic structure of each oyster is defined by
10 pairs of chromosomes (Wang et al. 2005); for com-
putational convenience, we assigned 4 genes to each
chromosome and 2 alleles per gene. Thus, each ani-
mal is specified by 40 loci, with the genotypes per-
mitted at each locus being AA, AB and BB. To initiate
each simulation, an initial population is created with
a defined genetic structure. Alleles on loci not in-
volved in disease resistance are assigned to be A or B
randomly, and act as neutral alleles. A single locus is
used to confer disease resistance which results from
early exposure of naive animals (here termed
juvenile fitness) and 14 loci are used to specify adult
fitness. Generally, alleles conferring disease resist-
ance are present at low frequency in an uninfected
population; that is, these alleles are not favored by
selection in the absence of disease (e.g. Detilleux
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Table 2. Relative eastern oyster Crassostrea virginica allele

fitness values and chromosome locations for each of the 15

loci associated with MSX disease resistance. Each is refer-

enced to the assumed maximum fitness of 1 for the AA geno-

type. Relative fitness values are based on unpublished data

provided by X. Guo (Haskin Shellfish Research Laboratory,
Rutgers University)

Locus Chromosome Life stage Relative fitness
AA AB BB

1 2 Adult 1 0.726  0.504
2 3 Adult 1 0.556  0.162
3 4 Adult 1 0.554  0.390
4 4 Adult 1 0.561  0.325
5 5 Adult 1 0.952  0.423
6 6 Adult 1 0.419  0.131
7 6 Adult 1 0.496  0.249
8 7 Adult 1 0.424  0.152
9 7 Adult 1 0412  0.294
10 8 Adult 1 0.566  0.089
11 9 Juvenile 1 0.385  0.179
12 9 Adult 1 0.531  0.439
13 9 Adult 1 0.969  0.395
14 10 Adult 1 0.469  0.260
15 10 Adult 1 0.622  0.389

2005, Powell et al. 2012). Since the actual allele fre-
quencies in the naive population are unknown, we
initially implemented both juvenile and adult fitness
ata 1:9ratio of A:Balleles. Verification against obser-
vations (see ‘Results’) supports this choice for adults;
however, the 1:9 allele frequency failed to provide an
adequate response for the juvenile trait. Thus, we ini-
tiated the juvenile fitness allele frequency assuming
Hardy-Weinberg equilibrium (50:50 ratio) based on
the work of Haskin & Ford (1979). The etiological
agent of MSX disease, Haplosporidium nelsoni, was
introduced; that is, MSX is not a naturally occurring
disease in C. virginica (Burreson et al. 2000), and
thus there was no prior selection for or against the al-
lele conferring juvenile resistance in the population.

In these simulations, the 15 loci are assigned an
allele fitness as described in Table 2, based on the
designation of A for the allele conferring disease
resistance and B for the alternative allele. Note that
each is given a weight relative to 1.0, which is as-
signed to the AA homozygote, in keeping with the
earlier caveat that only the relative ranking of effect
on disease resistance among genotypes can currently
be assigned with any degree of confidence. The locus
and chromosome to which each gene is assigned are
reported in Table 2.

Juvenile fitness for an individual oyster is deter-
mined by the fitness value that corresponds to its
genotype at locus 11 (Table 2), whereas adult fitness
is the average of the 14 values corresponding to its

genotype from each of the loci conferring adult dis-
ease resistance (Table 2). Most oyster loci have more
than 2 alleles (Launey & Hedgecock 2001, Wang &
Guo 2007). For these simulations, we assume that
only one of these alleles is associated with disease
resistance, so that a 2-allele configuration can be
used, with the second allele representing the host of
alleles having no influence on disease resistance. We
assume no epistasis, having limited information to
the contrary (e.g. Sokolova et al. 2006), although epi-
stasis is a common occurrence in Crassostrea spp.
(Hedgecock et al. 1995, 1996). In some cases, the
simple average of the maximum or minimum values
of allele fitness for the designated loci may define a
range narrower than 0 to 1, inclusive. From Table 2,
for example, an animal with a BB genotype at the
juvenile locus has a juvenile fitness of 0.179, whereas
an animal with genotype BB at all 14 adult loci would
have an adult fitness value of 0.292. Therefore, to
scale the genotypes on a range from 0 to 1, the mini-
mal and maximal fitnesss values obtained for both
the juvenile locus, and the adult fitness obtained
from the 14 loci are standardized to values of 0 and 1;
any genotype falling between 0 and 1 is standardized
within the 0-to-1 continuum by interpolation. Both
the final juvenile and adult fitness values for each
animal, then, have an easily quantifiable distinction
between the least and most fit animals; a value be-
tween 0 and 1, inclusive.

Hosts might evolve in response to a pathogen such
as H. nelsoniin 1 of 3 ways: decreased susceptibility
(the inability to become infected), increased resistance
(control of pathogen proliferation once infected), or
increased tolerance (lack of disease despite infection;
Ford 1988, Boots & Bowers 1999). For our purposes,
fitness is used as a summary response; that is, we do
not try to represent the 3 ways that the evolution of
response to disease might occur. In the model, selec-
tion simply operates by controlling variation in the
probability of death at a given age based on an
individual's value of fitness (either FitFacJuv or Fit-
FacAdult, depending on the age of the animal), as
specified in Eqgs. (1) & (2).

Simulations

Simulations in this study include a single-popula-
tion selection trial case (with which the genotype/
phenotype response of a series of cohorts was tuned)
plus a range of metapopulation simulations using 4
populations and covering a range of disease pres-
sures, larval connectivity patterns and local demo-
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graphic conditions. All simulations initiate with a fully
developed oyster population structure (a normal
range of size, sex and age frequencies as described in
Powell et al. 2011a) in each population, and were run
for 100 yr.

I. Selection trial case

The selection trial case simulates a single cohort of
oysters, and is designed to reflect the population
responses that resulted from a series of controlled
laboratory selection experiments which generated a
relatively rapid and repeatable evolution of resist-
ance to MSX disease-caused mortality in the oysters
of Delaware Bay (Haskin & Ford 1979). In these labo-
ratory-based trials, parental stock was taken from
wild oyster populations in the estuary. These parents
were bred, and the offspring (F;) were putin cages in
the estuary where they were exposed for 3 yr to rela-
tively high natural levels of MSX disease. The surviv-
ing offspring were then returned to the laboratory
and bred to generate the second generation (F,). The
F, generation was again exposed to naturally high
disease levels in cages in the estuary for 3 yr before
returning the survivors to the laboratory for breeding
again to generate the next generation (F3). This
selection experiment was performed multiple times
by researchers at the Haskin Shellfish Research
Laboratory over more than 2 decades with relatively
consistent responses, such that survival increased (on
average) with each generation (Haskin & Ford 1979).
Results of those repeated selection experiments are
summarized by Haskin & Ford (1979), and average
mortality curves from these experiments are used to
tune the selection pressure of disease in the model by
altering the way that mortality depends on FitFac
and the relative fitness of alleles. Tuning is accom-
plished by a single cohort model run, in which that
cohort is exposed to high rates of disease selection,
and oysters are allowed to reproduce only once in
their lifetime (at 3 yr of age). This allowed direct com-
parison of the observed survival curves with simu-
lated survival of each cohort to tune selection pres-
sure and oyster mortality in the model, ensuring
model selection pressure reflected the observed re-
sponses to MSX disease of initially naive populations.
Pathological examinations revealed that H. nelsoni
was present, and heavy, in oysters during that time
and that MSX disease was the major cause of mortal-
ity; other oyster diseases (including dermo) were not
major sources of mortality during that period (Ford &
Haskin 1987%).

II. Metapopulation simulations: varying disease,
larval and demographic conditions

The following sections describe the ways that dis-
ease pressure, larval connectivity and local demo-
graphic conditions are varied in simulations. All
metapopulation scenarios include 4 spatially distinct
populations of oysters, connected to one another by
larval dispersal. In the simulated metapopulation,
each population has distinct characteristics of disease
pressure, larval export and local demography (i.e.
growth rate and carrying capacity), thereby allowing
the model to represent spatial gradients in these
characteristics. Each combination of population-level
settings for these categories (disease pressure, larval
dispersal and local demography) is fully crossed with
the others, resulting in a total of 24 metapopulation
simulations (Fig. 3).

(a) Disease pressure. Two disease conditions are
simulated, both of which employ constant disease
pressure over time. In one condition, disease pres-
sure is high and constant throughout all populations,
thereby simulating a situation without spatial dynam-
ics in disease pressure. In the other condition, disease
pressure varies along an estuarine gradient where
disease is high in Population 4 (high salinity) and
grades to very low in Population 1 (low salinity)
(Fig. 2A).

(b) Larval dispersal. Larval connectivity matrices
specifying larval dispersal in the larval sub-model
include 6 distinct patterns, 5 of which are hypotheti-
cal and 1 of which represents a Delaware estuarine-
based pattern obtained from connectivity matrices
calculated by Narvédez et al. (2012a,b) using the
Regional Ocean Modeling System (ROMS; Haid-
vogel et al. 2000). The hypothetical patterns of dis-
persal are described in greater detail below and are
shown in Fig. 4 (also see Munroe et al. 2012, 2013a,b
for description of the larval sub-model and behavior
of neutral alleles in a metapopulation under various
dispersal patterns).

For any given larval dispersal pattern, the same
dispersal matrix is used in each simulated year. The
contrived patterns of dispersal include one in which
no connectivity occurs among populations (i.e. all
larvae are locally retained) and all larvae self-recruit.
A second contrived larval dispersal pattern has lar-
vae dispersed evenly among all populations (homo-
genous full mixing). In the downbay larval cascade
(directional dispersal) case, larvae do not move
‘upbay’ from their birth population but instead most
larvae disperse to the adjacent population downbay.
The inverse (an upbay cascade) is also used. The
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patterns used in simulations: (A) local retention, (B) even dispersal, (C) estuarine disper-

sal, (D) inverted estuarine dispersal, (E) downbay cascade and (F) upbay cascade. Color
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Fig. 3. All combinations in-
cluded in the simulations re-
ported in this study. Left column:
levels of disease selection;
center column: levels of eastern
oyster Crassostrea virginica
larval dispersal; right column:
levels of local demographics.
All combinations of levels are
simulated, as represented by the
lines connecting the levels

more realistic larval disper-
sal condition—the estuarine
larval dispersal—is based
on transfer probabilities
from Lagrangian larval
tracking simulations as pre-
viously discussed. In a final
contrived dispersal pattern,
this estuarine pattern is
inverted.

(c) Population demogra-
phy. Two patterns of popu-
lation demography are sim-
ulated: in both, local popula-
tion dynamics remain con-
stant for the duration of the
100 yr simulation (i.e. local
growth rate and carrying
capacity does not change
over time). In one pattern
of demography, all 4 popu-
lations are set to have
the same conditions of local
growth rate and carrying
capacity, thereby simulating
a case without spatial varia-
tion in local demographics.
The contrasting pattern varies
growth rate and carrying
capacity among populations
such that growth rate and
carrying capacity are low in
Population 1 (low salinity),
grading to high in Popula-
tion 4 (high salinity). This
pattern agrees well with the
observed conditions along
the estuarine gradient in
Delaware Bay that occurred
during the period 2000 to
2010 (Kraeuter et al. 2007,
Powell et al. 2008, 2009).
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Analysis

To assess the relative influence of changes in levels
of model population processes among the simula-
tions, we use analysis of variance (ANOVA) to rank
the population processes (disease pattern, larval dis-
persal and demographics) for each simulation output
in each population (Ginot et al. 2006). The change
in both juvenile and adult fitness from time zero to
25, 40, 60 and 100 yr for each population and each
simulation is used as a summary metric representing
the genetic response of the population over time.
Change in fitness was the response variable in each
ANOVA that included first-order interactions only,
where the dependent variables were the levels of
population parameters in each simulation. Specifi-
cally, the levels of dependent variables were: whether
a gradient in selection pressure was present (2 lev-
els), the various larval connectivity patterns (6 lev-
els), whether a gradient in local growth and carrying
capacity was specified (demographics: 2 levels), and
which population was being observed (4 levels).
ANOVA was used here simply as a means to rank the
relative influence of changes in the population para-
meters of interest, rather than as a direct test of sig-
nificance. For each ANOVA, variables that are sig-
nificant (p < 0.05) are ranked from highest to lowest
according to the associated F-statistic.

RESULTS
Comparison of simulated and observed selection trials

Opyster fitness in the single cohort selection trial
case responded rapidly to disease exposure. A simu-
lation using the genotype fitness values shown in
Table 2 and high disease pressure modifiers in the
mortality equations (Egs. 1 & 2) generated an initial
unselected cohort of oysters that experience very
high mortality early in life when exposed to disease.
This high rate of juvenile mortality in unselected oys-
ters agrees well with the average response of naive
populations observed during multiple selection ex-
periments performed at the Haskin Shellfish Re-
search Laboratory (Haskin & Ford 1979, our Fig. 5).
Subsequent generations of the simulated selection
trial (generations 2 and 4) show greatly reduced early
mortality compared to the unselected cohort, reflect-
ing a rapid phenotypic response to selection pres-
sure, although not as rapid as the average response
from selection experiments. The same is true for
mortality rates in later life stages; between simulated

selection trial generation 2 and 4, a large reduction in
the cumulative mortality is observed 3 and 4 yr after
exposure. The rate at which older oysters die (the
slope of the lines in Fig. 5) increases slightly from one
cohort to the next. Again, this increase is not as pro-
nounced as was observed for average experimental
cohorts (Haskin & Ford 1979).

Metapopulations
Influence of varied disease pressure

When all populations experience homogeneously
high disease selection pressure, the entire metapop-
ulation steadily and relatively rapidly evolves higher
fitness (shown by solid lines in Fig. 6). Juvenile fit-
ness doubles from about 0.4 to 0.8 in all populations
in 30 yr, whilst adult fitness doubles from about 0.05
to 0.1 in one-third of the time (10 yr). The differences
in the initial fitness values between juvenile and
adult fitness are due to the different initial allele fre-
quencies and varied fitness weighting of different
loci (Table 2). When spatially heterogeneous disease
pressure exists across the metapopulation (dotted
lines in Fig. 6), a much slower fitness response is ob-
served. Spatially varying disease pressure among
populations generates a doubling of juvenile fitness
in about 100 yr, whilst adult fitness barely increases
over the same duration.
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Fig. 5. Cumulative mortality curves from multiple eastern
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Fig. 6. (A) Juvenile and (B) adult fitness over time for each of the 4 east-
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Influence of varied population demo-
graphics

homogeneous high disease pressure (solid lines) and with a gradient in

disease pressure (heterogeneous case; dotted lines). Simulations plotted
here with both homogeneous and heterogeneous disease pressure have
even larval dispersal and homogeneous population demographics

Influence of varied larval dispersal

All 4 populations evolve a rapid increase in juve-
nile fitness and a constant increase in adult fitness
when no larval dispersal occurs, with disease pres-
sure homogeneously high and demographic condi-
tions constant (heavy black line in Fig. 7). In the
simulation with no larval dispersal, all 4 populations
demonstrate identical patterns in evolution of fit-
ness, verifying that the disease and demography
parameterizations in each of the 4 isolated popula-
tions are influencing phenotypes and genotypes
consistently. Therefore, allowing larval dispersal to
vary while holding disease pressure and demo-
graphy constant means that dispersal is the only

When population demographics are
equal among all populations in the
metapopulation and all experience high
disease pressure, all 4 populations steadily
evolve higher fitness (shown by solid lines
in Fig. 8). Both juvenile and adult fitness double,
from about 0.4 to 0.8, and 0.05 to 0.1 respectively, in
all populations in approximately 30 yr. Metapopula-
tion conditions in which all else is held constant
except spatially heterogeneous demography among
populations (dotted lines in Fig. 8) show a similar
response of fitness in each population compared to
the homogenous demography case.

ANOVA ranks

The influence of changes in disease pressure
(homogeneous to heterogeneous) ranked higher than
changes in other variables throughout the duration of
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Fig. 7. (A,B) Juvenile and (C,D) adult fitness over time for the most ‘upbay’ eastern oyster Crassostrea virginica population

(Population 1; A,C) and the most ‘downbay’ population (Population 4; B,D) under conditions of varying larval dispersal. Lines

in each plot are from simulations wherein only larval dispersal varies and disease and demography are held constant among

populations (homogeneous high disease and homogeneous demography). Heavy black line shows the case of no larval disper-
sal; remaining lines show each of the larval dispersal patterns used (see Fig. 3)

the simulation for both juvenile and adult fitness
(Fig. 9). Varying larval dispersal also ranked consis-
tently high, especially for fitness responses in the first
40 yr (generations). The interaction of selection and
larval dispersal also ranked high for both juvenile
and adult fitness, whereas the interaction of demo-
graphics and larval dispersal ranked relatively high
when considering change in adult fitness only (Fig. 9).
Under conditions of heterogeneous disease pressure,
larval dispersal tends to speed the increase in fitness
in unselected (low disease) populations (Fig. 10A,C),
and slow the increase in fitness in heavily selected
(high disease) populations (Fig. 10B,D). Larval dis-
persal patterns that are the most evenly mixed lead
to the most rapid evolution of fitness of all populations
under conditions of heterogeneous disease pressure
(Fig. 10).

DISCUSSION

In any ecosystem, a number of factors play a role in
the dynamics of population genotype, including sup-
ply-side factors such as larval dispersal, and post-
settlement factors such as selection and growth rate.
The model described here provides a way to consider
these factors together and to assess their relative
importance to selection for disease resistance in a
metapopulation over time. Neutral alleles can be
maintained homogeneously in a metapopulation
with very little larval dispersal (Munroe et al. 2012);
however, if a diversifying selection is present in one
part of a metapopulation, we would expect that the
selected allele will change in frequency over time
(Dégremont et al. 2010). The simulations performed
here show that pattern, with alleles conferring a
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Fig. 8. (A) Juvenile and (B) adult fitness over time for each of the 4 eastern oyster Crassostrea virginica populations from
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both homogeneous and heterogeneous demographic simulations use estuarine larval dispersal and homogeneous high
disease pressure

selective advantage increasing in frequency over
time, and the alleles not linked to fitness (neutral
alleles) remaining at about 50:50 (data not shown) in
the metapopulation over time.

Selection trial simulations

Cumulative mortality within a single selection trial
cohort matched results obtained empirically from
repeated selection trials. We tuned fitness and selec-
tion associated with the allele parameters in the
model to obtain simulation results that reflected
these selection experiments; we argue that this tun-
ing is appropriate for 2 reasons. First, these simula-
tions are meant to follow the metapopulation
response to disease exposure of a naive meta-
population, and the laboratory-based experiments

were initiated using naive oysters (those that had not
previously been exposed to MSX disease; Haskin &
Ford 1979). Second, observations made on wild pop-
ulations during the initial 3 yr of the MSX epizootic in
Delaware Bay documented mortality rates in wild
oyster spat and recruits that follow the mortality of
sequential generations shown in Fig. 5 (Haskin &
Ford 1979), suggesting that the cohort response
demonstrated in the experimental observations was
also evident in wild naive populations. The allele
parameters that generate a simulation reflective of
the observed oyster mortality curves made during
those repeated selection experiments is one in which
the allele that is strongly selected against in early life
(the first 2 yr) is initiated at 50% frequency in the
naive population. This initial frequency distribution
allows for strong selection before reproduction and
supports the suggestion of Haskin & Ford (1979,
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p. 61) that ‘a population of oysters that has never
been exposed to MSX contains a random distribution
of those genes which will determine its capacity
to deal with disease’. The full complement of 15 alleles
associated with resistance to mortality due to MSX
disease allowed for a rapid and high early mortality
in highly susceptible individuals, followed by a
slower further response in individuals that survived
the early exposure (Fig. 2). This condition agrees
with observations made by Ford et al. (1988, p. 41),
who hypothesized a ‘rapid early mortality in unse-
lected stocks... induced by a toxin and later mortality
associated with loss of condition and impaired physi-
ological functioning’. Thus, our model performance
agrees with the most robust datasets available that
document the response of naive Crassostrea vir-
ginica to MSX disease.

Metapopulation simulations

These simulations show varied genotypic and
phenotypic responses of a metapopulation to disease
selection pressure under spatially varying conditions
of disease pressure and larval dispersal. Biophysical
larval dispersal models have proven useful in pre-
dicting the dynamics of population genetics through
time. Galindo et al. (2006) used biophysically-based
larval connectivity matrices to simulate the devel-
opment of population genetics over time in a Carib-
bean broadcast spawning coral. Likewise, Kool et al.
(2011) used a larval dispersal model with a genetic
matrix model to predict coral population genetic
structure over time. Munroe et al. (2012, 2013a,b)
used an individual-based metapopulation genetics
model with biophysically estimated larval dispersal
patterns to simulate genetic connectivity of estuarine
oysters. All of these studies were able to simulate
spatial genetic population structure for sessile mar-
ine invertebrate populations; however, all used neu-
tral allele conditions and failed to include the influ-
ence of spatially heterogeneous selection pressure.
Our results provide a unique integration of the role of
supply (larval dispersal) and post-settlement (selec-
tion and growth) processes on genetic dynamics in a
marine system.

Spatially varying disease pressure
Spatial variability in selection pressure has the

greatest influence on the overall change in fitness of
a metapopulation (Fig. 9). In simulations where dis-

ease pressure is changed from homogeneously high
to spatially varying, the ability of the metapopulation
to respond to disease is slowed considerably by the
inclusion of populations with lower disease pressure
(Fig. 6). Larval dispersal of unselected genotypes
from populations in low disease conditions restricts
(slows) development of fitness in the remaining pop-
ulations, including those under high selection pres-
sure. When selection pressure is controlled (modu-
lated) by the environment, as is the case for oysters
in the Delaware estuary where a dominant upbay/
downbay gradient in salinity controls the disease
pressure (Haskin & Ford 1982) and larval dispersal
allows all populations to be connected (Narvéaez et al.
2012a), the environmental gradient will tend to main-
tain unselected alleles in the metapopulation and
decrease the capacity for the metapopulation to
evolve resistance to the disease.

The results of our simulations support the sugges-
tion by Ford et al. (2012) that the presence of disease
refuges (Hofmann et al. 2009) within a metapopu-
lation could slow or prevent that metapopulation
from developing resistance to disease. Munroe et al.
(2013Db) raised similar concerns in considering the
appropriate application of Marine Protected Areas
(likewise for oyster sanctuaries, Rodney & Paynter
2006 and no-take reserves, Mroch et al. 2012) as a
component of oyster restoration plans. The limited
success of disease-tolerant oyster strains introduced
into the wild emphasizes the importance of under-
standing the relationship of spatial variations in
selection, dispersal and demography (Hare et al.
2006). In our simulations, conditions of consistently
high disease selection pressure generate a relatively
rapid increase in overall metapopulation fitness, par-
ticularly for the case of no larval dispersal. This rapid
response is consistent with observations made in
Delaware Bay after an extensive selective mortality
event in 1985/1986 that resulted from a prolonged
period of drought. The low river flow conditions
during the drought increased salinity in the upper
reaches of the estuary, thereby allowing elevated
prevalence of MSX disease for all portions of the
metapopulation including areas previously consid-
ered disease refuges (Ford & Bushek 2012, Ford et al.
2012). The result of this extensive and strong selec-
tion event was a relatively disease-resistant meta-
population in Delaware Bay, despite the continued
presence of the disease agent, Haplosporidium nel-
soni. In contrast to the general success of larval sur-
vival during dispersal predicted by Lagrangian parti-
cle simulations for 1985/1986 (Narvaez et al. 2012b),
our results suggest that for such a rapid response to
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occur, these drought years may have also been times
of reduced larval survival and dispersal and/or rela-
tively high larval retention locally. However, Narvaez
et al. (2012b) also demonstrated that the timing of
oyster spawning relative to the tidal cycle can have
an impact on larval survival and the amount of local
retention, with neap tides generating more local
retention relative to spring tides; a prediction that
agrees with patterns observed in spawning and re-
tention of clam larvae (Carriker 1961, Chicharo &
Chicharo 2001). Therefore, elevated local retention
in 1985/1986 may have been a result of a large cohort
from a successful spawn occurring during neap tides.

We can contrast the rapid development of MSX
disease resistance in the Delaware estuary metapop-
ulation in the mid-1980s to the slower development
of resistance to the same disease in the Chesapeake
Bay. Oyster populations in the Chesapeake tend to
be found in higher abundances in portions of the
estuary where lower salinity protects them from
MSX disease (Carnegie & Burreson 2011). These
populations, existing under lower disease pressure,
exhibit lower disease resistance (Carnegie & Burre-
son 2011), and are connected through larval disper-
sal with other, more heavily selected populations
in the estuary (North et al. 2008). In agreement with
Mann et al. (1991), our simulations show that con-
nectivity among populations under varying disease
selection pressure retards overall development of
disease resistance. Another factor that has failed
to produce a similar metapopulation level response
in oyster disease resistance in Chesapeake Bay is
drought. The Chesapeake metapopulation has a much
more complex larval connectivity pattern because of
the numbers of tributaries and resulting hydro-
dynamics (North et al. 2008) than the basically fun-
nel-shaped Delaware estuary. This more complex
metapopulation structure may mean that events such
as drought may have a lower chance of generating
rapid evolutionary events such as that observed in
the Delaware estuary. It should be noted that recent
evidence shows some disease resistance may be
developing in wild populations in the Chesapeake
Bay (e.g. Wreck Shoal in the James River; Carnegie
& Burreson 2011).

In our simulations, spatially varying disease pres-
sure slows, but does not completely halt, the evolu-
tion of increased fitness in populations. Considering
that initial MSX mortality began in 1959 in Chesa-
peake Bay (Andrews 1964), our simulations show
that after 50 yr of exposure, fitness could increase by
approximately 40 to 50 % under spatially varying dis-
ease conditions (Fig. 6). Carnegie & Burreson (2011)

also noted the presence of a gradient in resistance
coincident with the gradient in disease pressure; this
is also predicted in our model where, in a given year,
the population under the highest disease pressure
has a slightly higher juvenile fitness than the popula-
tion under low pressure (Fig. 6). An important out-
come of these simulations, in contrast to other popu-
lation dynamics models that consider source-sink
dynamics but do not consider spatially varied selec-
tion pressure within the metapopulation (Lipcius et
al. 2008), is the suggestion that populations in areas
of higher disease pressure (e.g. higher salinity
populations) should be protected when the goals of
protection are to facilitate development of disease
resistance. In a fully connected metapopulation,
regardless of the prevailing larval dispersal pattern,
populations experiencing lower selection pressure
will tend to slow the development of other more
heavily selected populations. This suggests that ef-
forts intended to protect specific populations (e.g.
sanctuaries) would be best targeted at those popula-
tions under modest or high disease pressure to allow
those populations to thrive and possibly begin to sup-
ply a selected (disease-resistant) genetic contribution
to the overall metapopulation. This strategy agrees
with that suggested for certain Chesapeake Bay
oyster populations (Carnegie & Burreson 2011).

Larval dispersal

During selection trial exposure experiments that
used oysters from locations around the estuary and
exposed them to heavy disease, all responded to the
disease consistently, regardless of the disease pres-
sure they had experienced locally (Haskin & Ford
1979). This consistency among populations regard-
less of local disease pressure agrees with the fitness
response that our simulated populations experience
when larval dispersal among populations occurs
(Figs. 6 & 8) and further supports that these popula-
tions are well connected through larval dispersal.

Development of disease resistance in meta-
populations has been examined in other species of
broadcast-spawning molluscs. Black abalone is a
well-studied example in which populations have
demonstrated variable responses to disease pressure
(Friedman et al. 2014), with some populations failing
to develop resistance to disease. The severity of
abalone infection and mortality due to withering syn-
drome is tightly linked to temperature (Ben-Horin et
al. 2013); therefore, environmental heterogeneity in
temperature could result in spatially varying disease
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pressure among populations. Larval dispersal from
populations experiencing lower disease pressure
could explain the slower-than-expected rates of de-
velopment of disease resistance in some populations.

Selection is the driver of genetic change whilst lar-
val dispersal has a homogenizing influence (Sanford
& Kelly 2011). In general, this was shown in our
simulations. Any connectivity among differentially
selected populations tended to slow the fitness re-
sponse of heavily selected populations, and speed
the response of less selected populations. As such,
we could expect that the most evenly dispersed lar-
val pattern should generate the most homogenizing,
or slowest rate of selection. This was true for our
larval dispersal simulations, where the longest time
to double juvenile fitness was seen in the ‘even’' and
‘estuarine’ larval mixing simulations (those simula-
tions where all populations exchange larvae evenly;
Fig. 7A,B) and ‘even’ and ‘estuarine’ larval mixing
generated the most intermediate (average) rate of fit-
ness change when a gradient in disease pressure was
present (Fig. 10A,B). Similarly, we might expect that
the 2 cascading larval dispersal patterns (upbay,
downbay) should show opposite results when applied
to a metapopulation with a spatial gradient in disease
pressure, such that a downbay larval cascade should
allow for greater influence of unselected genotypes
(slower fitness response) because disease selection in
the upbay population is low, and an upbay larval cas-
cade should allow for greater influence of selected
genotypes (faster fitness response) because disease
selection downbay is high. The downbay cascade
showed this pattern, and the upbay cascade initially
showed a rapid evolution of fitness, but fitness de-
clined around year 12, possibly due to limited larval
supply from downbay because the downbay popula-
tion abundance became constrained by limited re-
cruits and high mortality (Fig. 10).

IMPLICATIONS

The importance of understanding the ecological
processes that facilitate or hinder evolution of disease
resistance is elevated by the possibility that disease
outbreaks are increasing in frequency and severity
due to climate change and other anthropogenic fac-
tors (Harvell et al. 1999, 2002, Lafferty et al. 2004,
Burge et al. 2014). Our rapidly increasing detection
capacity and more robust monitoring networks have
confounded our ability to distinguish the artefacts of
increased intensity of observation from true trends of
increasing outbreaks (Lafferty et al. 2004). None-

theless, compelling examples of well-documented
diseases in marine molluscs, sponges, mammals, and
even marine diseases in humans show that increas-
ing water temperature and other anthropological
stressors including pollutants and ocean acidification
have the capacity to affect the severity and frequency
of marine disease outbreaks (Lafferty 2009, Burge et
al. 2014). In addition to changes in severity, climate
change has the potential to influence the spread of
marine diseases. Northward progression of MSX
disease outbreaks since it was first observed in the
Delaware estuary in 1957 (Haskin et al. 1966) is a
classic example that has been linked with increasing
temperature (Hofmann et al. 2001). The northward
progression of the disease is associated with epi-
zootic oyster mortality events over the 30 yr following
initial detection that have caused massive economic
burdens to fishing communities along the east coast
of the United States (Burreson & Ford 2004). As dis-
ease intensity changes and species' ranges (both host
and disease) extend with changing climate, we must
consider the importance of understanding the mech-
anisms and rates of response in newly exposed popu-
lations and their capacity to develop resistance.
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