4,507 research outputs found
The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans
Open Access via PMC2649417Peer reviewedPublisher PD
High speed quantum gates with cavity quantum electrodynamics
Cavity quantum electrodynamic schemes for quantum gates are amongst the
earliest quantum computing proposals. Despite continued progress, and the
dramatic recent demonstration of photon blockade, there are still issues with
optimal coupling and gate operation involving high-quality cavities. Here we
show dynamic control techniques that allow scalable cavity-QED based quantum
gates, that use the full bandwidth of the cavities. When applied to quantum
gates, these techniques allow an order of magnitude increase in operating
speed, and two orders of magnitude reduction in cavity Q, over passive
cavity-QED architectures. Our methods exploit Stark shift based Q-switching,
and are ideally suited to solid-state integrated optical approaches to quantum
computing.Comment: 4 pages, 3 figures, minor revision
Single photon quantum non-demolition in the presence of inhomogeneous broadening
Electromagnetically induced transparency (EIT) has been often proposed for
generating nonlinear optical effects at the single photon level; in particular,
as a means to effect a quantum non-demolition measurement of a single photon
field. Previous treatments have usually considered homogeneously broadened
samples, but realisations in any medium will have to contend with inhomogeneous
broadening. Here we reappraise an earlier scheme [Munro \textit{et al.} Phys.
Rev. A \textbf{71}, 033819 (2005)] with respect to inhomogeneities and show an
alternative mode of operation that is preferred in an inhomogeneous
environment. We further show the implications of these results on a potential
implementation in diamond containing nitrogen-vacancy colour centres. Our
modelling shows that single mode waveguide structures of length in single-crystal diamond containing a dilute ensemble of NV
of only 200 centres are sufficient for quantum non-demolition measurements
using EIT-based weak nonlinear interactions.Comment: 21 pages, 9 figures (some in colour) at low resolution for arXiv
purpose
Dietary interventions for maintaining cognitive function in cognitively healthy people in late life
This is the protocol for a review and there is no abstract. The objectives are as follows: In this review we will set out to evaluate the effects of dietary interventions for maintaining cognitive function in cognitively healthy people in late-life
A pattern matching technique for measuring sediment displacement levels
This paper describes a novel technique for obtaining accurate, high (spatial) resolution measurements of sediment redeposition levels. A sequence of different random patterns are projected onto a sediment layer and captured using a high-resolution camera, producing a set of reference images. The same patterns are used to obtain a corresponding sequence of deformed images after a region of the sediment layer has been displaced and redeposited, allowing the use of a high-accuracy pattern matching algorithm to quantify the distribution of the redeposited sediment. A set of experiments using the impact of a vortex ring with a glass ballotini particle layer as the resuspension mechanism are described to test and illustrate the technique. The accuracy of the procedure is assessed using a known crater profile, manufactured to simulate the features of the craters observed in the experiments
Efficient Quantum Computation using Coherent States
Universal quantum computation using optical coherent states is studied. A
teleportation scheme for a coherent-state qubit is developed and applied to
gate operations. This scheme is shown to be robust to detection inefficiency.Comment: 6 pages, 5 figures, extended and modified (in print, PRA
Unique morphological characteristics of mitochondrial subtypes in the heart: the effect of ischemia and ischemic preconditioning.
RATIONALE: Three subsets of mitochondria have been described in adult cardiomyocytes - intermyofibrillar (IMF), subsarcolemmal (SSM), and perinuclear (PN). They have been shown to differ in physiology, but whether they also vary in morphological characteristics is unknown. Ischemic preconditioning (IPC) is known to prevent mitochondrial dysfunction induced by acute myocardial ischemia/reperfusion injury (IRI), but whether IPC can also modulate mitochondrial morphology is not known. AIMS: Morphological characteristics of three different subsets of adult cardiac mitochondria along with the effect of ischemia and IPC on mitochondrial morphology will be investigated. METHODS: Mouse hearts were subjected to the following treatments (N=6 for each group): stabilization only, IPC (3x5 min cycles of global ischemia and reperfusion), ischemia only (20 min global ischemia); and IPC and ischemia. Hearts were then processed for electron microscopy and mitochondrial morphology was assessed subsequently. RESULTS: In adult cardiomyocytes, IMF mitochondria were found to be more elongated and less spherical than PN and SSM mitochondria. PN mitochondria were smaller in size when compared to the other two subsets. SSM mitochondria had similar area to IMF mitochondria but their sphericity measures were similar to PN mitochondria. Ischemia was shown to increase the sphericity parameters of all 3 subsets of mitochondria; reduce the length of IMF mitochondria, and increase the size of PN mitochondria. IPC had no effect on mitochondrial morphology either at baseline or after ischemia. CONCLUSION: The three subsets of mitochondria in the adult heart are morphologically different. IPC does not appear to modulate mitochondrial morphology in adult cardiomyocytes
High Temperature Macroscopic Entanglement
In this paper I intend to show that macroscopic entanglement is possible at
high temperatures. I analyze multipartite entanglement produced by the
pairing mechanism which features strongly in the fermionic lattice models of
high superconductivity. This problem is shown to be equivalent to
calculating multipartite entanglement in totally symmetric states of qubits. I
demonstrate that we can conclusively calculate the relative entropy of
entanglement within any subset of qubits in an overall symmetric state. Three
main results then follow. First, I show that the condition for
superconductivity, namely the existence of the off diagonal long range order
(ODLRO), is not dependent on two-site entanglement, but on just classical
correlations as the sites become more and more distant. Secondly, the
entanglement that does survive in the thermodynamical limit is the entanglement
of the total lattice and, at half filling, it scales with the log of the number
of sites. It is this entanglement that will exist at temperatures below the
superconducting critical temperature, which can currently be as high as 160
Kelvin. Thirdly, I prove that a complete mixture of symmetric states does not
contain any entanglement in the macroscopic limit. On the other hand, the same
mixture of symmetric states possesses the same two qubit entanglement features
as the pure states involved, in the sense that the mixing does not destroy
entanglement for finite number of qubits, albeit it does decrease it. Maximal
mixing of symmetric states also does not destroy ODLRO and classical
correlations. I discuss various other inequalities between different
entanglements as well as generalizations to the subsystems of any
dimensionality (i.e. higher than spin half).Comment: 14 pages, no figure
Low Cost and Compact Quantum Cryptography
We present the design of a novel free-space quantum cryptography system,
complete with purpose-built software, that can operate in daylight conditions.
The transmitter and receiver modules are built using inexpensive off-the-shelf
components. Both modules are compact allowing the generation of renewed shared
secrets on demand over a short range of a few metres. An analysis of the
software is shown as well as results of error rates and therefore shared secret
yields at varying background light levels. As the system is designed to
eventually work in short-range consumer applications, we also present a use
scenario where the consumer can regularly 'top up' a store of secrets for use
in a variety of one-time-pad and authentication protocols.Comment: 18 pages, 9 figures, to be published in New Journal of Physic
Macroscopically distinct quantum superposition states as a bosonic code for amplitude damping
We show how macroscopically distinct quantum superposition states
(Schroedinger cat states) may be used as logical qubit encodings for the
correction of spontaneous emission errors. Spontaneous emission causes a bit
flip error which is easily corrected by a standard error correction circuit.
The method works arbitrarily well as the distance between the amplitudes of the
superposed coherent states increases.Comment: 4 pages, 2 postscript figures, LaTeX2e, RevTeX, minor changes, 1
reference adde
- …