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Abstract. Electromagnetically induced transparency (EIT) has often been
proposed for generating nonlinear optical effects at the single photon level; in
particular, as a means to effect a quantum non-demolition measurement of a
single-photon field. Previous treatments have usually considered homogeneously
broadened samples, but realizations in any medium will have to contend with
inhomogeneous broadening. Here we reappraise an earlier scheme (Munro
et al 2005 Phys. Rev. A 71 033819) with respect to inhomogeneities and
show an alternative mode of operation that is preferred in an inhomogeneous
environment. We further show the implications of these results on a potential
implementation in diamond-containing nitrogen-vacancy colour centres.
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1. Introduction

The importance of quantum mechanics to modern technology is indisputable. However, what
remains to complete the ‘quantum revolution’ [1] is the exploitation of coherent quantum
mechanics in technological devices as well as the incoherent quantum mechanics responsible
for, e.g. transistor electronics. Systems of strongly interacting photons and atoms have long
been convenient systems for probing coherent quantum mechanics through the field of quantum
optics.

Of all the effects between coherently prepared atoms and light, electromagnetically induced
transparency (EIT) is often promoted as an important building block for physics and device
applications, because EIT allows the possibility of large optical nonlinearities accompanied by
complete transparency [2]. EIT is a coherent quantum phenomenon whereby the absorptive
and dispersive properties of a three (or more) state system can be tailored by using applied
electromagnetic fields, and we discuss its properties more fully below. First observed by Boller,
Imamoğlu and Harris [3], some of the proposed applications for EIT include magnetometry [4],
high-efficiency UV generation [5, 6], photonic switches [7], and optical [8] quantum gates,
and light storage in first-in first out (FIFO) networks [9, 10]. Although the medium of choice
is usually a vapour cell (e.g. Rb [11]), future technology may be more easily realized with
solid-state media. EIT has also been studied in solids [12]–[18], magneto-optical traps [19] and
Bose–Einstein Condensates [20].

Here, we concentrate on the possibility of using the lossless Kerr nonlinearity associated
with EIT for realizing a quantum non-demolition (QND) measurement. QND via the cross-
Kerr effect between two distinct optical modes was originally proposed by Imoto et al [21],
and invoking the EIT-induced Giant Kerr nonlinearity is a popular suggestion for realizing a
π/2 phase shift for such a measurement. The idea that such a QND gate could be realized by
weak nonlinearities, such as are routinely found in EIT systems, without a full π/2 phase shift
induced on the detection beam, was introduced in [22]. In this system, the weak nonlinearity
is effectively enhanced by the presence of a strong probe beam. However, the earlier proposal
did not consider all of the limitations of realistic systems, and in particular did not consider
the effect of inhomogeneous broadening of the EIT medium: we do so here. Although we are
concentrating on QND measurements, it has been shown that QND measurements effected
by weak nonlinearities can act as a primitive for other quantum gates, [23] and this directly
leads to the Qubus [24]–[27] and related schemes for quantum repeaters [28] and cluster-state
generation [29]. The results presented here should be equally applicable to these, and other
EIT-related schemes.

New Journal of Physics 11 (2009) 093005 (http://www.njp.org/)
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Figure 1. (a) Schematic of the three-state � system under consideration. States
|a〉 and |c〉 are ground (meta-stable) states, and have no direct spontaneous
emission pathways. |b〉 is an excited state, which decays to |a〉 and |c〉 with equal
probabilities. The |a〉–|b〉 transition is driven by field 1, with detuning � + δ

(i.e. δ is the shift from the mutual detuning �), and Rabi frequency �1 (probe).
The |b〉–|c〉 transition is driven by field 2 (pump) with detuning �, and Rabi fre-
quency �2. (b) Schematic of the four-state system in the N configuration, where
the � system is modified by an interaction with field 3 driving (off-resonantly)
the |c〉–|d〉 transition with Rabi frequency �3 and detuning �3. Driving the
|c〉–|d〉 transition perturbs the EIT in the |a〉–|b〉–|c〉 system via the usual light
shift, which plays a role equivalent to the two-photon detuning in the three-state
scheme. (c) Proposed configurations for realizing the QND measurement. Fields
1 and 3 enter a single-mode diamond waveguide constructed from a photonic
bandgap material with tailored group velocity for field 3. Two illustrations of
potential structures are shown, the lower follows Krauss [30], and the upper
is via coupled cavity arrays in the style of Altug and Vučković [31]. Field 2
(not shown) illuminates from the side. The unknown field, field 3, propagates
unperturbed, but field 1 is phase shifted by the number of photons in field 3, and
this phase shift can be read out using heterodyne methods (not shown).

EIT is a well-known mechanism for generating optical nonlinearities without loss [2], for a
recent review see [32]. The typical (and minimal) system in which to observe EIT is a three-state
system in the � configuration with two driving fields, depicted in figure 1(a) with states labelled
|a〉, |b〉 and |c〉. EIT is a manifestation of quantum interference in an atomic system: considering
field 1 as a ‘probe’ and field 2 as a ‘pump’, absorption of the probe is suppressed due to the
coherence induced by the pump. The coherence gives rise to interference between the dressed
states on the |c〉–|b〉 transition, and hence a dip in the probe absorption. Because the absorption
dip is due to a coherent two-photon resonance (the resonant two-photon transition from |a〉 to
|c〉) it can, in principle, be much less than the optical linewidth of the |a〉–|b〉 transition, limited
only by the decoherence on the |a〉–|c〉 transition.

Although transparency is the eponymous feature of EIT, of more practical interest is the
steep and controllable dispersion curve that is associated with the transparency point [33, 34].
A typical example of the dispersive and absorptive spectra associated with EIT are shown in
figure 2. At the transparency point (two-photon resonance between the ground states) there is
a linear dispersion. This feature has led to dramatic demonstrations of ultra-slow group velocity
light [20, 36, 37] and is the basis for the Giant Kerr nonlinearity [35] in the N configuration of
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Figure 2. Typical dispersion (a) and absorption (b) curves associated with EIT
in a � system (solid lines) compared with those of a two-state system with
equal probe couplings (dashed lines). The narrow EIT resonance is associated
with linear dispersion at δ = 0. The steep slope makes it easy to perturb the EIT
resonance and gives rise to the Giant Kerr effect.

figure 1(b). Considering the N system as a � system perturbed by an off-resonant transition,
one can see that the detuned off-resonant third field induces a small light shift to |c〉. Although
this is a small effect, because of the steepness of the dispersion, a large effect on the EIT
resonance is observed. This property was proposed for achieving photonic blockade in cavity
QED systems [38], and has undergone extensive theoretical investigation (e.g. [39]–[43]) and
recently observed [44] (although in the two-state, rather than four-state configuration). When
field 3 is resonant, an absorptive, rather than dispersive, nonlinearity is observed, which has
been studied theoretically [7] and experimentally [45, 46], and will not be treated here. Neither
do we consider the many related atomic configurations, e.g. the Tripod [47], extended N [48],
Chain-� [49], and M-scheme [50], although they all offer potential improvements over the
conventional N scheme.

One important detail for realizing nonlinear interactions in the N system is that of group
velocity matching. In a travelling wave geometry to realize the N system of figure 1(b), we
require the pulses that describe fields 1 and 3 to be temporally coincident for the maximum
cross-Kerr interaction (the classical pump field 2 can be assumed to be derived from a large
uniform field, and so is exempt from this criterion). Because field 1 is travelling under EIT
conditions, it will be propagating with extremely slow group velocity: field 3 is not. We see
that the amount of mutual interaction would therefore be expected to be limited by the temporal
walk-off of the two pulses. There have been many suggestions in the literature to counter this
effect (e.g. [51, 52]) which invoke varying levels of complexity of the interaction medium.
It is also possible to control group velocity by modification of the medium, e.g. by using
tailored photonic bandgap structures [53, 54]. Because we are mainly interested in solid-state
implementations, we will assume that the system is embedded in a photonic-crystal structure
where the group velocity as seen by field 3 is tuned by the structure to balance the EIT-induced
group velocity seen by field 1, and we therefore will not treat this detail further. One further
aspect of the photonic crystal design that must be addressed is the coupling of the light fields
to the EIT channel. This can be achieved in at least two ways. The most obvious solution is to
generate all fields on-chip, and this approach is most convenient for integrated chip designs.
If coupling to free-space modes is required, then demonstrated nanotaper couplers suggest
themselves as obvious means to couple single-photon modes to the single-mode waveguides
considered here [55].

New Journal of Physics 11 (2009) 093005 (http://www.njp.org/)
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Although much of our treatment in this paper will be system independent, it is important
to note that a major motivation for performing this reappraisal of weak nonlinear gates
is the availability of a new material for observing optical EIT: diamond containing the
negatively charged nitrogen-vacancy (NV) colour centre. This material has shown quite
remarkable results, including single-photon generation (e.g. [56]), room-temperature Rabi
oscillations [57], and spin–spin coupling [58]–[61]. EIT has been demonstrated in NV diamond
in the rf [13] and optical regimes [16, 17]. The intrinsic properties of NV centres can also be
modified by fabricating optical structures directly in ultra-nanocrystalline [62] or single-crystal
diamond [63]–[65], by growth on pre-existing optical structures [66], and also by Stark shifting
that has been demonstrated on bulk samples [67] and spectrally resolved centres [68, 69]. The
combination of EIT with photonic crystal structures for cross-phase modulation was previously
studied in [70, 71]. The time is therefore ripe to examine NV diamond for the goal of optical
quantum information processing.

In the next section, we discuss EIT and the properties of coherently driven � systems. By
including inhomogeneous broadening and expanding about the EIT point we are able to derive
analytical results for the absorption and dispersion without the usual assumption of weak probe
and strong pump fields. We are also able to determine optimal ratios for pump and probe Rabi
frequencies. In section 3, we show the results for cross-Kerr nonlinearities in the four-state N
system, and in section 4, we present our main results, which use the results from the preceding
sections to design structures based on diamond containing the NV colour centre that should be
sufficient to realize a number-discriminating QND operation.

2. Three-state � system

A schematic of our model three-state system is shown in figure 1. Following Shore [72], we
write down the Hamiltonian under the rotating wave approximation in matrix form with state
ordering |a〉, |b〉, |c〉

H= h̄(�1σbb + (�1 − �2) σcc + �1σba + �2σcb + h.c.), (1)

where field 1 (field 2) drives the |a〉–|b〉 (|b〉–|c〉) transition with Rabi frequency �1 (�2) and
detuning �1 (�2), and σi j = |i〉〈 j |. As we are operating near the two-photon resonance, we
write �1 = � + δ and �2 = � where, � is the mutual detuning, and δ is the detuning from
two-photon resonance. Spontaneous emission at rate � is from |b〉 to |a〉 and |c〉 with equal
probabilities. We treat inhomogeneous broadening by considering a distribution of �, i.e. the
mutual detunings. As we are only considering inhomogeneity on the excited state distribution,
the two-photon detuning, δ, does not vary. Note that although we will use terminology such as
‘pump’ and ‘probe’, we will usually make no assumption about the relative strength of these
fields. In this way our analysis is analogous to the cases treated by Wielandy and Gaeta on EIT
in the strong pump regime [73] or the parametric EIT regime [74].

One way to proceed in gaining insight on the EIT problem set out in equation (1) is to
construct the master equation and determine the steady state solution. This can be expressed as

ρ̇ = − i

h̄
[H, ρ] +

∑
j

� jL[Bj , ρ], (2)

where we have introduced the usual density matrix, ρ and the Liouvillian super-operator,
L[B, ρ], which describes the effect of the generalized decoherence channel B with rate � � 0

New Journal of Physics 11 (2009) 093005 (http://www.njp.org/)
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on the density matrix, and is summed over all decoherence channels. The Liouvillian operators
are defined

L[B, ρ] ≡ BρB† − 1
2

(
B† Bρ + ρB† B

)
. (3)

In our case,we restrict ourselves to the case that the system is limited by spontaneous emission,
and that the decoherence between the ground states can be neglected. This approximation is
warranted because of the very long ground-state decoherence rates in important systems of
interest (e.g. diamond containing the negatively charged NV colour centre [59, 75], or rubidium
vapour cells [36]) but does limit the minimum Rabi frequencies that can be applied to be
larger than this decoherence rate. So here, the B will be the one-way (spontaneous emission)
transitions from |b〉 to either |a〉 (σab) or |c〉 (σcb) with rate, �/2.

To analyse equation (2) in the steady state, we convert the master equation into
superoperator form, and write

�̇ρ = (−iP +L) �ρ, (4)

where �ρ is the vector obtained by writing out the density matrix elements, and P and L are the
superoperators describing Hamiltonian and decoherence processes, respectively.

In addition to the master equations, we also include the effect of inhomogeneous
broadening. Inhomogeneous broadening has been treated previously in the context of Doppler-
broadened EIT in vapour cells (e.g. [76, 77]), and is treated as a Gaussian distribution of the
absolute energy of |b〉, which in turn is manifested as a variation in � across the sample,
i.e. there is a probability distribution of detunings

P(�) = 1√
2πγ 2

exp

[
−(� − �0)

2

2γ 2

]
, (5)

where �0 = ∫ ∞
−∞ �P(�) d� is the mean mutual detuning with respect to the inhomogeneous

linewidth, which has standard deviation γ . Figure 3 shows spectra with the real and imaginary
parts of the ab–bc |a〉–|b〉 coherence, ρab (proportional to the probe dispersion and absorption,
respectively) with �1 = �/10 and �2 = �/2 to illustrate the effect of inhomogeneous
broadening on the resonant EIT profile. Figures 3(a) and (b) show the absorption and dispersion
curves for � from 0 to positive values showing the effect of increasing �. Note that spectra
of the same colour go together. Although the overall spectra are quite different, in the vicinity
δ = 0 they are all locally similar. This is clearer in figures 3(c) and (d) which shows spectra from
large negative to positive � superimposed, showing the local similarity strongly. Figures 4(a)
and (b) show the effect over the whole inhomogeneous linewidth with γ = 10� (solid blue line)
compared with the a sample with equal total population but only homogeneously broadened
sample (black dashed line). Note that these plots may equally well be interpreted as classic
hole-burning spectra [78]. The self-similarity of the EIT traces is not dependent upon the mutual
detuning, as is illustrated in figures 4, which compares �0 = 0 with �0 = −�.

The self-similarity of the EIT profiles about δ = 0 may be understood by considering ρab

in the steady state. Setting �̇ρ = 0, we determine the null-space, which gives the nontrivial steady
state solution for �ρ(ss). In general, the analytical results are somewhat complicated. By confining
our interest to the region around δ = 0, i.e. in the vicinity of the two-photon resonance, we may
perform a series solution for �ρ(ss) in powers of δ, which yields to first order

ρaa = �2
2

�2
1 + �2

2

− 2�2
1�

2
2�(

�2
1 + �2

2

)3 δ, (6)

New Journal of Physics 11 (2009) 093005 (http://www.njp.org/)
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Figure 3. EIT in for homogeneously broadened systems. (a) Re(ρab) as
function of δ for the mutual detunings of � = 0, 2�, 4� (blue, black and red
lines, respectively) to illustrate the effect of moving away from resonance.
(b) Absorption [Im(ρab)] under the same conditions. Again note that all of
the EIT transparency windows overlap. (c) Closeup in the vicinity of δ = 0,
showing Re(ρab) this time for � = −2�, −�, 0, �, 2� (blue, green, red, cyan
and magenta lines, respectively) (d) Analogous spectra for Im(ρab).

ρab = �1�
2
2(

�2
1 + �2

2

)2 δ = ρ∗
ba, (7)

ρac = − �1�2

�2
1 + �2

2

+
�1�2

[
�

(
�2

1 − �2
2

)
+ i�

(
�2

1 + �2
2

)]
(
�2

1 + �2
2

)3 δ = ρ∗
ca, (8)

ρbb = 0, (9)

ρcb = − �2
1�2(

�2
1 + �2

2

)2 δ = ρ∗
bc, (10)

ρcc = �2
1

�2
1 + �2

2

+
2�2

1�
2
2�(

�2
1 + �2

2

)3 δ. (11)

Cursory inspection of these steady state results provides some very important properties of
the EIT condition. Modelling of inhomogeneous broadening was to be by varying � over the
ensemble, however, assuming field 1 is the probe and field 2 the pump, then the parameter of
interest for EIT is ρab. From the above, we see the well-known linear dependance with detuning
expected for an EIT resonance, which has no dependence on �, indicating that inhomogeneous
broadening will affect neither the absorption nor dispersion seen by the probe field to first order
in the probe detuning (but to all orders in the mutual detuning). This is an important result,

New Journal of Physics 11 (2009) 093005 (http://www.njp.org/)
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Figure 4. Comparison of EIT traces as a function of the detuning from the
two-photon resonance condition, δ, for one-photon resonance, (a) real part,
(b) imaginary part, resonant with the inhomogeneous line centre, i.e. �0 = 2�,
with the case that �0 = � in (c) real part and (d) imaginary part. In each case
the dashed line is the single-atom result, and the solid lines are the average
over the inhomogeneous line, with γ = 10�.

highlighting that EIT is extremely robust to inhomogeneous broadening in the excited state.
To see effects due to the inhomogeneous broadening of the line, we will need to go to higher
orders in δ.

The total coherence is obtained by integrating over the inhomogeneous linewidth, so
we have

�ab =
∫ ∞

−∞
P(�)ρab d�, (12)

where we have introduced �ab as the coherence integrated over the inhomogeneous line. As∫ ∞
−∞ P(�) d� = 1, to first order in δ, we have trivially that �ab = ρab. To see effects due to the

inhomogeneous line, we must go to second order in δ, where we have

ρ
(2)

ab = �1�
2
2

(�2
1 + �2

2)
2

[
δ +

(
�2

2 − 3�2
1

)
�δ2

(�2
1 + �2

2)
2

− i
�δ2

(�2
1 + �2

2)

]
+O[δ]3. (13)

Performing the integration over the inhomogeneous line yields

�
(2)

ab =
∫ ∞

−∞
P(�)ρ

(2)

ab d�, (14)

= �1�
2
2

(�2
1 + �2

2)
2

[
δ +

(
�2

2 − 3�2
1

)
�0δ

2

(�2
1 + �2

2)
2

− i
�δ2

(�2
1 + �2

2)

]
. (15)

Regions with high dispersion are associated with regions of high nonlinearity, and hence
will inform us in our search for optimal working points for our gates. The probe dispersion

New Journal of Physics 11 (2009) 093005 (http://www.njp.org/)



9

–10

–5

0

5100

10–2

10–4

10–6

10–6 10010–210–4

Figure 5. First-order probe dispersion, plotted as log10(Rab) as a function of
�1 (probe) and �2 (pump) in the vicinity of two-photon resonance in a three-
state system. Note that the dispersion as seen by the probe will be largest when
�2 = √
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is defined

Rab ≡ ∂Re[ρab]

∂δ
, (16)

and using the first-order solution in equation (10) we obtain

Rab = �1�
2
2(

�2
1 + �2

2

)2 . (17)

Note that if we set �2 = √
3�1, then the second-order correction to the refractive index in

equation (13) is nulled, and we must therefore go to third order in δ (or higher) to observe terms
depending explicitly on the inhomogeneous broadening. This result also carries through to the
dispersion, i.e. that the gradient is largest when �1 and �2 are smallest and maximized when
�2 = √

3�1. A graph showing log10(−Rab) as a function of �1 and �2 is shown in figure 5,
along with a line showing the maximal dispersion at �1 = √

3�2. These results may be useful to
optimize slow and stopped light experiments, however, for the purposes of QND measurements
(as will be seen in section 4) the susceptibility is simply maximized for minimum possible �1.

To explore the absorption we take the imaginary part of the solution for ρab, which is to
third order in δ

A = − �1�
2
2�

(�2
1 + �2

2)
3
δ2 + 2��

�1�
2
2(�

2
1 − �2

2)

(�2
1 + �2

2)
5

δ3 +O[δ4]. (18)

Ignoring the third-order correction, here we see the familiar quadratic dependence with respect
to detuning, and as presaged above, there is no contribution to the absorption from �. We
can infer the bandwidth of the EIT medium, by considering the effect of the EIT window on
a pulse with finite bandwidth. Figure 6(a) shows schematically a transform limited Gaussian

New Journal of Physics 11 (2009) 093005 (http://www.njp.org/)
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Figure 6. (a) Schematic showing the absorption seen by an optical pulse with
finite bandwidth. To second order, the EIT window has absorption that is
quadratic in δ, where a transform limited pulse is a Gaussian in δ, so the residual
absorption per unit length seen by a pulse travelling through an EIT window will
be found by taking the overlap integral of the pulse and absorption. (b) Log base
10 of the maximum bandwidth in units of � that will attainA= 1% as a function
of �1/� and �2/�. Note that although the bandwidths can be quite small, they
are still of the order of the Rabi frequencies of the fields, which accords with our
intuition about the width of the EIT window. The smallest allowable bandwidth
coincides with the largest dispersions, again as one would expect.

pulse propagating through the quadratic EIT window. If we assume that the pulse is defined
by some spectral width f , centred around the EIT window at δ = 0, with the functional form
exp[−δ2/(2 f 2)]/

√
2π f 2, then to determine the total (single atom) absorption we integrate the

pulse over the EIT window,

A=
∫ ∞

−∞

exp
[−δ2/(2 f 2)

]
√

2π f 2

�1�
2
2�

(�2
1 + �2

2)
3
δ2dδ, (19)

= �1�
2
2� f 2

(�2
1 + �2

2)
3
, (20)

and this quantity will prove essential in determining bandwidth requirements in the design of
practical nonlinear gates. To explore this, we calculate in figure 6(b) the bandwidth in units of
the spontaneous emission, f/� as a function of �1/� and �2/� that will achieve a A= 1%.
Such analyses as these allow us to determine gate speeds for QND measurements and will be
exploited in section 4.

Finally, we comment on the group velocity seen under conditions of EIT. Group velocity
reduction is one of the most dramatic consequences of EIT and is observable in the usual
pump–probe arrangement (e.g. [20, 36]). Perhaps surprisingly, large changes in the group
velocity between fields (group velocity mismatch) can actually lead to a strong reduction in
effective coupling. As mentioned previously, we propose group velocity engineering as the
solution to this mismatch, but it is essential to understand the group velocity under conditions
of EIT in order to specify the propagation properties of the unknown field.

New Journal of Physics 11 (2009) 093005 (http://www.njp.org/)
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The group velocity of a probe field can be determined using equation (17), so we have

vgab = c

η + ω1
2

∂χab

∂�

, (21)

where η is the bulk refractive index, and we have introduced the susceptibility

χab = 2πN
ε0εRh̄

μ2
ab

�1
ρab, (22)

and so
∂χab

∂δ
= 2πN

ε0εRh̄

μ2
ab

�1
Rab, (23)

= 2πN
ε0εRh̄

μ2
ab

�2
2(

�2
1 + �2

2

)2 , (24)

whereN is the number density of active centres. So in the limit that the group velocity reduction
is large, we have

vgab = cε0εRh̄

πωNμ2
ab

(
�2

1 + �2
2

)2

�2
2

. (25)

Ultimately we will be interested in the group velocity associated with quantized fields,
rather than the semiclassical form above. Making the substitution �̃1

√
n1 = �1 where n1 is the

number of photons in the mode, gives the group velocity seen by a mode with n1 photons of

vgab = cε0εRh̄

πωNμ2
ab

(
�̃2

1n1 + �2
2

)2

�2
2

. (26)

These results will be used in section 4, especially with quantization of the probe field.
In general, one would seek the largest possible vg that enables effective coupling, so as to
minimize the reduction in the group velocity on the unknown signal which is not travelling
under conditions of EIT-reduced group velocity. Also the group velocity dispersion that will
manifest with uncertainty in the number of photons in the probe field is also a potential source
of error and should be minimized. This implies a rule of thumb, that we should seek operation
in the limit of large n1 to minimize the relative variation in vg.

3. Four-state N system

The four-state N scheme is one level structure that clearly shows a cross-Kerr effect, and is
illustrated in figure 1(b). There is much freedom to choose which fields correspond to pump,
probe and driving, and all appear to have been treated in the literature in various places.
For concreteness, we will treat the N system as a � perturbed by an off-resonant transition.
Furthermore, we will be considering the effect of the |b〉–|d〉 transition (hence field 3) on field 1,
so in this section, the parameters of interest will be ρab and �ab. For this case, we set the
operating point for the � system as δ = 0. Under these conditions, the Hamiltonian is

H= h̄(�σbb + �3σdd + �1σba + �2σcb + �3σdc + h.c.), (27)

where the (in general unknown) Rabi frequency of field 3 is �3 and it is detuned from the
|b〉–|d〉 transition by �3 	 �3.
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In the case that the |c〉–|d〉 transition is only homogeneously broadened, we may treat
the effect of field 3 on the |a〉–|b〉–|c〉 system quite simply. Our treatment here follows and
extends [8]. The effect of a field 3 on the |c〉–|d〉 transition can be seen as an off-resonant light-
shift, which in turn perturbs the |a〉–|b〉–|c〉 � EIT. The strength of the light shift can be directly
equated with a shift in � and −δ to yield

δ = −�2
3

�3
, (28)

in the limit that �3 	 �3. Recalling that the residual population in |d〉 is a source of error, we
will assume that this population must be kept below some threshold, ε

ρdd =
(

�3

�3

)2

� ε. (29)

Using the previous result for the steady state of ρab, and substituting for δ, we have

ρab = − �1�
2
2(

�2
1 + �2

2

)2

�2
3

�3
. (30)

The Hamiltonian of equation (27) can also be attacked using the superoperator approach.
We assume that all decay from |d〉 is to |c〉 at rate �, and keeping the other terms the same
from the � analysis, except � = 0. We can obtain the steady state response quite easily, but for
clarity, we only report the coherence on the |a〉–|b〉 transition, which is

ρab = − �1�
2
2�

2
3

(�3 + i�/2)(�2
1 + �2

2)
2

+O[�3]4, (31)

which is qualitatively very similar to the previous result, but with the inclusion of an extra
absorption term.

To move to the case of a finite inhomogeneous linewidth, we first recall that we may
safely ignore linewidth to first order on the � system, however, we cannot do so on the |b〉–|d〉
transition, as �3 appears directly in the coherence. Therefore, using the light-shifted treatment
from equation (30) we write down the ensemble coherence as

�ab =
∫ ∞

−∞
P(�3)ρab d�3, (32)

= − �1�
2
2�

2
3√

2πγ 2
(
�2

1 + �2
2

)2

∫ ∞

−∞

exp[−(�3 − �0)
2/(2γ 2)]

�3
d�3, (33)

= −
√

π�1�
2
2�

2
3√

2γ 2
(
�2

1 + �2
2

)2 exp

(
− �2

0

2γ 2

)
erfi

(
�0√
2γ 2

)
, (34)

where erfi(x) = erf(ix)/i is the imaginary error function. Note that although we have treated
the inhomogeneous linewidths for |d〉 as equivalent to that of |b〉, the analysis is practically
unchanged if we took a more general case. It is instructive to examine the behaviour of just
the exponential and imaginary error function terms, to determine the optimal ratio of mean
detuning to inhomogeneous linewidth. Setting d = �0/

√
2γ 2 as the mean detuning in units of

the linewidth, and J (d) ≡ exp(−d2)erfi(d) in figure 7, we plot J (d) versus d, as for constant
γ , all the other terms are constant. The maximum of J can be seen as being just before
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Figure 7. Graph showing optimal mean detuning from resonance in units of
the inhomogeneous linewidth. Here we have taken our figure of merit to be
J (d) ≡ exp(−d2)erfi(d), which is the term in �ab which depends explicitly
on d = �̄/(2γ ). Note that the results for d � 1 will not be relevant for our
discussion because the condition �3 
 �3 may be unsatisfied, and there may
also be significant resonant one-photon absorptions of field 3.

d = 1; however, care must be taken in this limit, and there will still be appreciable absorption of
field 3 in this limit (as there will be on-resonant atoms). However, detuning by 5 inhomogeneous
linewidths (i.e. d = 5) only has the effect of reducing the effective �ab by about one-sixth
compared to a homogeneously broadened sample at such a detuning: the larger effect is the
penalty in having to go to such large detunings to avoid the line (i.e. for a homogeneously
broadened sample, one could work closer to resonance).

An alternative transition to be considered for the readout is the |c〉–|d〉 transition. The
coherence associated with this can also be determined and is

ρcd = − 2�2
1�3

(2�3 + i�)(�2
1 + �2

2)
+O[�3]3. (35)

Integrating this over the inhomogeneity on the |c〉–|d〉 transition does not yield analytic
solutions; however, by replacing the denominator by the large detuning approximation (i.e. the
term (2�3 + i�)/2 is replaced by �3, we get

�cd = −
√

π�2
1�3√

2γ 2(�2
1 + �2

2)
exp

(
− �0

2γ 2

)
erfi

(
�0√
2γ 2

)
. (36)

For completeness, we also report the coherence on the |c〉–|b〉 transition, which is

ρcb = 2�2
1�2�

2
3

(2�3 − i�)(�2
1 + �2

2)
2
. (37)

As the response here is clearly analogous to that of ρab we will not repeat any further discussion
of using this transition for monitoring any probe state, except to note that changing between
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|a〉–|b〉 and |c〉–|b〉 may perhaps be useful for reasons of experimental convenience in certain
implementations, but otherwise would appear to hold no benefits.

It is interesting to note that neither equation (31) nor (35) exhibit self-Kerr effects, with the
first self-nonlinearities for ρab appearing at fourth order, and for ρcd appearing at third order.
The presence of Kerr terms would hamper state discrimination in nonlinear gates (see next
section) [79, 80]. One should note that the canonical method for generating self-Kerr terms in
EIT media is to allow a field to interact with more than one transition (e.g. [38, 48, 49]), which
effectively converts the cross-Kerr nonlinearity into a self-Kerr nonlinearity. The suppression of
self-Kerr terms is desirable, as they give rise to pulse distortion, which can limit the effectiveness
of any gate based on nonlinear interactions [81].

Finally, we comment further on the populations in the excited states. In equation (29), we
presented a simple two state argument for the population in state |d〉, which was viewed as a
potential source of error. We now examine the full solutions for ρbb and ρdd , which turn out to be
qualitatively similar to the analysis based on perturbing the EIT structure by the extra transition.

Starting with ρdd , we find that the expansion to third order in �3 yields (Note that neither
ρbb nor ρdd have corrections in �3

3.)

ρdd = �2
1

�2
1 + �2

2

�2
3

�2
3 + (�/2)2

+O[�3]4. (38)

This result can be immediately interpreted as the usual, off-resonant population from
equation (29) (with spontaneous emission explicitly included), scaled by a factor due to the
diminished population in |c〉 because of the coherent population trapping in the � system.
Similarly, we can calculate the population in |b〉. Although the unperturbed EIT condition leads
to no steady-state population in |b〉, the perturbed EIT will give rise to nonzero population. As
above, this can be calculated and to third order in �3 we obtain

ρbb = �2
1�

2
2

(�2
1 + �2

2)
2

�2
3

�2
3 + (�/2)2

+O[�3]4. (39)

In general, if we have �2 = √
z�1, then we will have

ρbb = z

(z + 1)2

�2
3

�2
3 + (�/2)2

, (40)

ρdd = 1

z + 1

�2
3

�2
3 + (�/2)2

. (41)

Any population occupying the excited states will in general be available for decoherence
and give rise to errors. By inspection of equations (40) and (41), we observe qualitatively the
same familiar criterion from equation (29) (with minor corrections).

4. Implications for the design of QND weak nonlinear detectors

Our focus is on the construction of a device capable of achieving a QND measurement of the
number of photons in a weak field. In this section, we will combine the previous analyses above
with realistic parameters that are achievable using a solid-state slow-light EIT waveguide, which
contrasts with the more general discussion of EIT-based nonlinear interactions. Our analysis
focuses on QND measurement of a weak field with unknown photon number and we show
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discrimination between 0, 1 and 2 photons in the unknown field. In some of the parameter ranges
discussed below, we also observe distortions of the probe field. While this is not a problem
for QND discrimination, it may restrict the utility of our discriminator for use in quantum
gates [25], where the requirement for sequential use of the QND probe favours regimes where
the Q-function of the probe is only rotated, and not also distorted by the nonlinear interaction.

We will first describe the appropriate metrics for evaluating the performance of any such
gate in a material independent fashion, and then conclude by presenting realistic operating
conditions in several potential implementations as a guide for future demonstrations. For clarity,
throughout this section we will restrict ourselves to the case that the |a〉–|b〉 transition is probed
by a weak coherent state, and the |c〉–|d〉 transition has the unknown signal field.

One of the most important parameters to determine the strength of the measurement
signal is the effective Rabi frequency of the unknown pulse. Analysis of this will show that
spatially confined structures (e.g. waveguides) will have a considerable advantage over free-
space implementations. Following [82] we may express the single-photon Rabi frequency for
the interaction with the ensemble of atoms as

�̃3 = λ12

4π

√
3� fN l, (42)

where we have introduced λ12, the resonant transition free-space wavelength, l the length of
the medium (or with imperfect group velocity matching it will be the length of the effective
interaction region) and recall that f is the bandwidth of the single-photon pulse. The Rabi
frequency is then

�3 = �̃3
√

n3, (43)

and the other Rabi frequencies can be defined similarly. Note that there is usually a dependence
on the beam waist in equation (42); however, this is compensated by the number of interacting
four-state systems within the single-photon spot size (so a larger spot interacts with more
systems but with less strength). However, waveguide structures will still have significant
advantages in minimizing the beam cross-sectional area compared with free-space structures,
with the effective medium length in free-space being ultimately limited by the Rayleigh range
of the beam.

We first need to connect the microscopic description presented above with the
macroscopically observable quantities. In particular, when considering the four-state system
with the probe field on the |i〉–| j〉 transition, the phase shift seen by the probe [82]

Ki j = �i�i j , (44)

and the evolution of a state, |αi〉, impinging on the |i〉–| j〉 transition for time t is

|α′
i〉 = exp

(
iKi j t

) |αi〉. (45)

Before exploring numerical examples, it is instructive to study the nonlinear optical
processes. In particular, it is natural to consider two transitions to be probed to effect
QND measurements, i.e. we could probe the |a〉–|b〉 transition, with the unknown field on
|c〉–|d〉 transition, or probe the |c〉–|d〉 transition with unknown field on the |a〉–|b〉 transition.
Substituting for the density matrix elements (and assuming �2 is a classical pump field) we
have

Kab = −
√

π

2γ 2

�̃2
1�

2
2�̃

2
3n1n3(

�̃2
1n1 + �2

2

)2 J

(
�2

0

2γ 2

)
, (46)
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and

Kcd = −
√

π

2γ 2

�̃2
1�̃

2
3n1n3(

�̃2
1n1 + �2

2

) J

(
�2

0

2γ 2

)
. (47)

which allows the calculation of either phase shift depending on the relative strengths of the
fields.

To understand these nonlinearities it is instructive to consider certain limits. One of the
common limits is when the pump is strong and the single-photon fields weak, i.e. �2 	
�̃1

√
n1, �̃3

√
n3. In this case, the population will be optically pumped predominantly into |a〉

and the N system reverts to two weakly coupled two-state transitions. In each case then the
phase shift becomes

Kweak = −
√

π

2γ 2

�̃2
1�̃

2
3n1n3

�2
2

J

(
�2

0

2γ 2

)
, (48)

which is an ideal cross-Kerr nonlinearity, but is reduced by the Rabi frequency of the strong
pump.

Another interesting limit is when �̃2
1n1 = �2. Note that this limit will never exactly be

reached for a coherent state probe due to the uncertainty in n1. In this case, we obtain

K equal
ab = −

√
π

2γ 2

�̃2
3n3

4
J

(
�2

0

2γ 2

)
, (49)

K equal
cd = −

√
π

2γ 2

�̃2
3n3

2
J

(
�2

0

2γ 2

)
. (50)

So there is only a factor of two difference between the schemes. Note that because of the probing
condition, we should interpret Kab as the desired cross-Kerr effect to realize QND measurement,
and Kcd represents a self-Kerr effect, although there are still cross-Kerr nonlinearities at work
as the n1 term has been removed only by the special choice of the limit.

To explore the optimal parameter regime, we define κ ≡ �̃1/�2, which gives

Kab = −
√

π

2γ 2
�̃2

3n3 J

(
�2

0

2γ 2

)
κ2n1(

κ2n1 + 1
)2 , (51)

Kcd = −
√

π

2γ 2
�̃2

3n3 J

(
�2

0

2γ 2

)
κ2n1

κ2n1 + 1
. (52)

To directly compare these results, in figure 8 we show Tab ≡ κ2n1/(κ
2n1 + 1)2 and Tcd ≡

κ2n1/(κ
2n1 + 1) as a function of κ2n1 for varying n1, which is equivalent to the ratio �1/�2.

The T show us the important regimes and there are many features of interest here. Firstly, we see
that Tab is maximized for κ2 = 1/

√
n1 at Tab = 1/4, which is the equal case from equation (49).

This demonstrates the result anticipated earlier that the largest phase shift is found when the
Rabi frequencies of the fields in the EIT system are equal. Secondly, we note that Tcd is always
greater than Tab, and is monotonically increasing. One must realize, however, that the nature
of the nonlinearity is different for the two probing conditions. By scaling with �̃1n1, we are
implicitly treating the |a〉–|b〉 transition as the probed transition, and |c〉–|d〉 as the unknown
transition. Hence Tab and Tcd in this context refer to scalings of the cross-phase and self-phase
modulations respectively. Note that Tcd asymptotes to 1 as κ2n1 → ∞.
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Figure 8. Scalings of the cross-Kerr (Tab—solid lines) and Kerr (Tcd—dotted
lines) nonlinearities as a function of κ2n1 = �1/�2 for the case of a weak
coherent pulse applied to the |a〉–|b〉 transition and the unknown (possibly single
photon) field applied to the |c〉–|d〉 transition. The maximum of Tab occurs for
the case that �1 = �2.

The correct way to explore the nonlinear effect and hence QND measurement of the
unknown field on the probe is to determine the Q-function of the state after the interaction.
To effect a QND measurement, we require the Q-functions of the probe beam with and without
a single photon in the channel being monitored to be distinguishable. Explicitly, returning to
equation (45) we take the initial state of the probe field to be a coherent state |α〉, with mean
photon number |α|2. After interacting with this susceptibility, Kab for a period of time t , the
probe will be in the state

|α′〉 = exp

(
−|α|2

2

) ∞∑
n1=0

αn1

√
n1!

exp(iKabt) |n1〉, (53)

and recall that Kab is a function of both n1 and n3. Note that in general |α′〉 will not be a coherent
state following the interaction. We may define the Q-function for the state after interacting with
the nonlinear medium, which is

Q(β) = |〈β|α′〉|2, (54)

= exp
[− (|α|2 + |β|2)] ∞∑

n1=0

(β∗α)n1

√
n1!

exp(iKabt)
∞∑

m1=0

(α∗β)m1

√
m1!

exp (iKabt). (55)

Note that as required, when �3 = 0 (i.e. the case of no-photon on the |c〉–|d〉 channel), Kab = 0
and the Q-function is simply the same Q-function expected for no interaction, i.e. there is no
self-Kerr modulation.
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The candidate system for realizing a QND measurement that we are considering is a
monolithic single-mode diamond waveguide (at 637 nm containing NV− centres), which is
being pursued using a number of different fabrication strategies, e.g. [63, 65, 83]. The energy
levels show many possible configurations for achieving the four-state system under
consideration [16, 69] and we will not delve further into these schemes, apart from noting
that the transition dipole moments can be achieved and to some extent tuned in situ. Maximal
coupling requires the smallest width single-mode waveguides, which for the zero phonon line of
NV− corresponds to a cross section of around 200 × 200 nm2. To avoid potential cross coupling
between centres, we choose an intercentre spacing of 0.25 μm, which for the waveguide under
consideration corresponds to an atomic density of N = 6 × 1019 m−3. This level is achievable
using ion implantation into ultra-low N synthetic diamond (e.g. [84]). Also for NV diamond,
we have εR ∼10 and μab ∼10−30 on the zero-phonon line transition.

To determine the bandwidth of the pulse to be measured, we rearrange equation (20)
for an absorption of A= 1%. This implies that the bandwidth of probe and single-photon
field should be f = 8.9 × 10−3� = 740 kHz, or approximately �/100. With this bandwidth,
we may immediately determine the single-photon Rabi frequency, which from equation (42) is
�̃3 = 5.39

√
l GHz. The group velocity depends on the EIT condition and also the number of

photons in the probe field.
Under these assumptions, and assuming the reduced inhomogeneous broadening for NVD

on the zero phonon line that has been observed in low N diamond [16, 64, 85] of γ = 10 GHz,
we are now able to fully model the rotation of the probe field in the QND measurement. Results
from simulation are shown in figure 9, which shows the resulting Q-functions for various values
of α and number of photons in the signal beam (field 3) for three different waveguide lengths, 20,
40 and 80 mm, along with the expected error rates for p-quadrature homodyne measurements.
A full list of parameters used in the calculations are provided in table 1.

Figure 9 shows families of Q-functions for the state of the probe field after traversing the
EIT medium. Consider first the Q-functions in figures 9(a), (c) and (e), which correspond to the
interactions with waveguides of length 20, 40 and 80 mm, respectively. In each plot, there are
three sets of lines. The lowest, horizontal set corresponds to the case that the signal field (field 3)
had no photons, and represents the unperturbed probe field. This highlights the fact that the
three-state EIT system does not exhibit self-phase modulation without a signal photon; however,
as the strength of the nonlinear interaction grows, there are considerable distortions (squeezing)
in the probe beam due to the signal field, clearly evidenced in the 80 mm waveguide results for
either 1 or 2 photons in the signal beam. Each point along this set corresponds to increasing α

from 2 to 40. The upper two curves correspond to the probe field after traversing the medium
with the signal field in the one photon (middle curve) or two photon (highest curve) state,
respectively, with α increasing to the right as before. Note that the signal field-induced phase
shift is only linear in small α (weak �1) regime, which highlights the differences between the
EIT-induced nonlinearity and an ideal cross-Kerr medium, which reflects the detailed analysis
presented in sections 2 and 3. The QND distinguishability is maximized at around α ∼ 15 for
these parameters. Note that this is earlier than the maximum expected from Tab, which we
attribute to group velocity dispersion reducing the effective interaction time for certain modes
of the probe field. We also observe the distinctive signature of squeezing on the probe beam as
the strength of the nonlinear interaction is increased, particularly seen in the distortion of the
Q-functions in figure 9(e). This clearly shows that nonlinear effects need to be carefully
considered, as has been pointed out by Shapiro [81] and Shapiro and Razavi [86], although
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Figure 9. Q-functions and error rates for QND measurements via p-quadrature
homodyne measurements for varying probe α, and length of waveguide,
demonstrating QND measurements using realistic parameters. In each of the
pseudo-colour traces (a), (c) and (e), the three sets of radial distributions
correspond to the output probe beam when the signal has 0, 1 or 2 photons. Sets
of distributions at constant radius from the origin (marked with a white cross)
are grouped with equal |α〉 as α is varied from 2 to 40; (b), (d) and (e) show the
expected error rates for p-homodyne measurements (projection onto the Im(β)

axis). The length of the waveguide was varied between traces, with (a) and (b)
corresponding to 20 mm, (c) and (d) to 40 mm, and (e) and (f) to 80 mm. In the
latter case, we observe a single-photon phase shift in the probe beam of order
π , indicating a massive nonlinearity. All parameters were chosen to correspond
closely to expected EIT conditions in low N diamond containing NV− colour
centres, and other parameters correspond to these of reported in table 1. Note the
expected increase in separation between the Q-functions for signals containing
0,1 and 2 photons with increasing α when α � 15. After this the nonlinearity
saturates, reduces, and effectively cancels at α ∼ 30. One should further note that
in (a) and (c), the one-photon nonlinear phase shifts preserve the Gaussian shape
of the probe beam, however, by (e), the strength of the nonlinear interaction is
so large as to cause significant distortion and squeezing of the probe. Although
this may be desirable for some applications, this has the effect of reducing the
fidelity of p-quadrature homodyne detection of the signal field. Error rates in
p-quadrature homodyne measurements are shown in (b), (d) and (f). The solid
curves correspond to the error rates for 0–1 photon discrimination, while the
dashed lines correspond to 1–2 photon discrimination. There error rates differ
due to the very large nonlinearities and squeezing observed in the large nonlinear
interaction cases.
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Table 1. Parameters for NV diamond waveguide system under consideration as
QND gate.

Waveguide cross-section w0 × w0 = 200 nm × 200nm
Atomic concentration N = 6.0 × 1019 m−3

Dipole moment (ZPL) μab = 10−30 cm−1

Transition frequency λ = 637 nm

Relative permittivity of diamond εR = 10

Homogeneous linewidth � = 83 MHz

Inhomogeneous linewidth γ = 10 GHz

Pulse bandwidth f = 740 kHz

Semiclassical Rabi frequency �2 = �/10

Field ratios κ = �̃1/�2 = 1/50

Signal per photon Rabi frequency �̃3 = λ
4π

√
3� fN l = 5.39 × 109

√
l Hz

Detuning scaling J = 1/6

Group velocity vgab = cε0εR h̄�2
2

ωNμ2
ab

(
κ2n1 + 1

) = 1.08 × 103
( n1

2500 + 1
)

ms−1

the Gaussian output pulses in (a) and (c) show that a satisfactory operating regime exists to
observe nonlinear phase shifts without appreciable squeezing. However, a complete study of
these processes is beyond the scope of this work.

QND measurement can be inferred whenever the Q-functions of the probe field
corresponding to 0, 1 and 2 signal photons do not overlap. However, in a practical experiment,
distinguishability of the output Q-functions is not sufficient. Discrimination between
Q-functions is conveniently made by a p-quadrature homodyne measurement, i.e. by projecting
the measured state onto the Im(β)-axis. The expected error rates of performing such
measurements are shown in the traces of figures 9(b), (d) and (f). Again, we observe optimal
distinguishability when the phase shift is larger, although in all cases the distinguishability is
less than the overlap between the Q-functions, due to the projection. The distinguishability
between 0 and 1 photons is usually better than between 1 and 2 photons, simply because of the
large nonlinearity that is seen. In practice, the strength of the nonlinear interaction that has been
obtained for the 80 mm waveguide is far larger than one would want in a practical QND device.

The parameters used in the equations used to generate the results shown in figure 9
are fairly typical of what has already been achieved or will be soon achieved in NVD.
With variations in the parameters, there will be changes in the resulting phase shifts, but the
parameters that we chose were not ‘fine tuned’.

The above discussion has centred around QND measurements of an unknown signal field.
We now briefly turn to the issue of QND parity gates as described in [24]–[26]. As discussed,
the EIT waveguide already suffices to demonstrate a parity-based entangling gate with fidelity
50%. The operation of such a gate can be understood by a double implementation of the QND
detector, as shown in figure 10(a). The probe beam interacts with two, independent signal beams,
in two waveguides, before being measured. In this way, the state of both, unknown signal
beams is determined, thereby inducing entanglement between the beams for appropriate
initial states of the signal beams. The Q-functions for the probe state after interacting with
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Figure 10. (a) Schematic showing the operation of a QND parity gate using two
EIT waveguides. The red zones indicate the EIT media, and the black stripes
indicate wavelength selective drop filters to allow modulation/demodulation of
the signal fields with the probe field. The classical pump beam is not shown,
nor is the homodyne measurement at the end of the protocol. (b) Output
Q-functions following the interactions of the probe field with both signal fields
in the states |00〉, |01〉, |10〉 and |11〉 with each EIT waveguide being 30 mm long
and α1 = 12.5. The 0, 1 and 2 photon subspaces are all clearly distinguishable
and |01〉 and |10〉 give indistinguishable outputs showing that a non-deterministic
parity gate can be realized with this configuration.

two signal beams sequentially is shown in figure 10(b) for 30 mm waveguides and α1 = 12.5.
Note that for the signal photons in the states |01〉 and |10〉, the probe state Q-functions are
indistinguishable, as required for the parity gate. It is possible to convert this scheme into a
deterministic QND parity gate using the techniques described in [25].

5. Conclusions

We have performed investigations of three-state EIT in an inhomogeneously broadened sample
with the aim of determining the necessary conditions for performing a QND measurement in
a realistic solid-state medium, diamond containing the NV colour centre. Our results suggest
that even in the presence of the relatively large inhomogeneous linewidth of these systems,
QND measurements are possible using relatively modest extensions of the existing state
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of the art. These conclusions add substantial impetus to the ongoing push for diamond-based
quantum photonics and offer increased support for quantum computing based on weak nonlinear
interactions.
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