5,362 research outputs found

    Analysis of the transient behavior of rubbing components

    Get PDF
    Finite element equations are developed for studying deformations and temperatures resulting from frictional heating in sliding system. The formulation is done for linear steady state motion in two dimensions. The equations include the effect of the velocity on the moving components. This gives spurious oscillations in their solutions by Galerkin finite element methods. A method called streamline upwind scheme is used to try to deal with this deficiency. The finite element program is then used to investigate the friction of heating in gas path seal

    Experimental study of bubble cavities attached to a rotating shaft in a reservoir

    Get PDF
    Bubble cavities formed by air entrainment and attached to a rotating shaft in an oil reservoir were studied. The cavities appear to the unaided eye as toroidal. High speed photography, however, reveals the individuality of the bubble cavities and their near solid body rotational characteristics. The cavities are distorted by the rotation effects but remain attached and tend to merge because of edge effects in the axial direction. The flow field within the reservoir is influenced by the unusual character of the two phase fluid found there; the vorticity is readily visualized. Other examples of vapor entrapment at the inlet of an eccentric rotor are also discussed. A simplified analytical method is provided, and a numerical analysis is being investigated. Vapor (void) entrainment and generation can significantly alter leakage rates and stability of seals, bearings, and dampers. Recognition of these effects in the component design systems will result only after detailed studies of the above phenomena

    A cross-sectional study of the clinical characteristics of cancer patients presenting to one tertiary referral emergency department

    Full text link
    © 2015. Introduction: There is increasing evidence of cancer patients presenting to emergency departments (ED). The study aim was to analyse the characteristics of adult cancer patients presenting to one ED. Understanding cancer patient presentations could assist in the development of new models of care. Methods: A 12 month retrospective audit was conducted of a random sample of cancer patients. Demographics and characteristic variables were analysed using descriptive, comparative and correlational statistics. Results: The presentation rate for adult cancer patients was 1110 (2.4%) with 290 sampled. The common symptoms were fever (n = 54: 18.6%), abdominal pain (n = 34: 11.7%), and shortness of breath (. n = 32: 11%). The majority of patients were allocated a Triage Category 2 (n = 94: 32.4%) or Triage Category 3 (n = 131: 45.2%). The majority of patients presented between 2 and 15 times. For patients administered antibiotics the average time was 119.8 minutes (SD ± 85.5). The average ED length of stay was mean 8.08 hours with 271 patients (93.4%) admitted to the hospital. Of the 290 patients, 105 (36.2%) had died within 12 months of ED presentation. Conclusion: The study has shown that while cancer patients are only a small percentage of ED presentations the vast majority are allocated high triage codes, have high admission rates and high mortality rates

    Nested subcritical flows within supercritical systems

    Get PDF
    In supercritical systems the design inlet and outlet pressures are maintained above the thermaodynamic critical pressure P sub C. Designers rely on this simple rule of thumb to circumvent problems associated with a subcritical pressure regime nested within the supercritical pressure system along with the uncertainties in heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines and linear systems, where nested two-phase regions can exist. Examples for a free-jet expansion with backpressure greater than P sub C and a rotor (bearing) with ambient pressure greater than P sub C illustrate the existence of subcritical pressure regimes nested within supercritical systems

    A polymer coated cicaprost-eluting stent increases neointima formation and impairs vessel function in the rabbit iliac artery

    Get PDF
    Drug-eluting stents have been successful in reducing in-stent restenosis but are not suitable for all lesion types and have been implicated in causing late stent thrombosis due to incomplete regeneration of the endothelial cell layer. In this study we implanted stents coated with cicaprost, a prostacyclin analogue with a long plasma half-life and antiproliferative effects on vascular smooth muscle cells, into the iliac arteries of rabbits. At 28-day follow-up we compared neointima formation within the stented vessels and vascular function in adjacent vessels, to assess if cicaprost could reduce restenosis without impairing vessel function. Arteries implanted with cicaprost eluting stents had significantly more neointima compared to bare metal stents. In adjacent segments of artery, endothelium-dependent relaxation was impaired by the cicaprost-eluting stent but vasodilation to an endothelium-independent vasodilator was maintained. We conclude that the presence of the polymer and sub-optimal release of cicaprost from the stent may be responsible for the increased neointma and impaired functional recovery of the endothelium observed. Further experiments should be aimed at optimising release of cicaprost and exploring different stent polymer coatings

    The clinical application of PET/CT: a contemporary review

    Get PDF
    The combination of positron emission tomography (PET) scanners and x-ray computed tomography (CT) scanners into a single PET/CT scanner has resulted in vast improvements in the diagnosis of disease, particularly in the field of oncology. A decade on from the publication of the details of the first PET/CT scanner, we review the technology and applications of the modality. We examine the design aspects of combining two different imaging types into a single scanner, and the artefacts produced such as attenuation correction, motion and CT truncation artefacts. The article also provides a discussion and literature review of the applications of PET/CT to date, covering detection of tumours, radiotherapy treatment planning, patient management, and applications external to the field of oncology

    DEoptim: An R Package for Global Optimization by Differential Evolution

    Get PDF
    This article describes the R package DEoptim, which implements the differential evolution algorithm for global optimization of a real-valued function of a real-valued parameter vector. The implementation of differential evolution in DEoptim interfaces with C code for efficiency. The utility of the package is illustrated by case studies in fitting a Parratt model for X-ray reflectometry data and a Markov-switching generalized autoregressive conditional heteroskedasticity model for the returns of the Swiss Market Index.

    Discrete Lie Advection of Differential Forms

    Get PDF
    In this paper, we present a numerical technique for performing Lie advection of arbitrary differential forms. Leveraging advances in high-resolution finite volume methods for scalar hyperbolic conservation laws, we first discretize the interior product (also called contraction) through integrals over Eulerian approximations of extrusions. This, along with Cartan's homotopy formula and a discrete exterior derivative, can then be used to derive a discrete Lie derivative. The usefulness of this operator is demonstrated through the numerical advection of scalar fields and 1-forms on regular grids.Comment: Accepted version; to be published in J. FoC

    Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery

    Get PDF
    The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings

    Vol. 1, No. 2 (1981)

    Get PDF
    • …
    corecore