ANALYSIS OF THE TRANSIENT

BEHAVIOR OF RUBBING COMPONENTS

Mongi Ben Quezdou

R. L. Mullen

Department of Civil Engineering CASE WESTERN RESERVE UNIVERSITY Cleveland, Ohio 44106

Final Report NASA Contract NAG3-369 Principal Investigator: R. L. Mullen

> NASA Technical Officers R. C. Hendricks G. E. McDonald

(NASA-CR-176546) ANALYSIS OF THE T	RANSIENT	N86-19464
(Case Western Reserve Univ.) 51 p	lar Report	
HC A04/MF A01	CSCL 11G	Unclas
	G3/27	05516

TABLE OF CONTENTS

Abstract	i				
List of Symbols	ii				
Introduction	1				
	1				
Literature Review	3				
Formulation of the Partial Differential					
Equations	7				
Finite Element Formulation	10				
Problems and Solutions 1					
Conclusions	30				
References	31				
Appendix I Shape Functions	33				
Appendix II Stiffness Matrix	34				
Appendix III Input Data Form	37				
Publications Resulting from Grant	46				

ANALYSIS OF THE TRANSIENT

BEHAVIOR OF RUBBING COMPONENTS

ABSTRACT

Finite element equations are developed for studying deformations and temperatures resulting from frictional heating in sliding system. The formulation is done for linear steady state motion in two dimensions. The equations include the effect of the velocity on the moving components. This gives spurious oscillations in their solutions by Galerkin finite element methods. A method called "streamline upwind scheme" is used to try to deal with this deficiency. The finite element program is then used to investigate the friction of heating in gas path seal.

i

LIST OF SYMBOLS

Ъ	Specific neat at constant pressure
Е	Young's modulus
F	Body force
Н	Hilbert spaces
k	Thermal conductivity
, k	Artificial conductivity
N	Shape function
q	Heat flux
Т	Absolute temperature
U	Displacement
v	Velocity
W	Weighting function
α	Thermal expansion coefficient
λ	Lame's constant
μ	Shear modulus
ρ	Density
ξ,η	Natural coordinates
ν	Poisson's ratio
ω	Angular velocity
() _{,i}	$= \frac{\partial()}{\partial x_{i}}$

Chapter 1

INTRODUCTION

The first law of thermodynamics expresses the energy balance during mechanical and thermal process. In the analysis of rubbing problem, the loss of mechanical energy (frictional energy) is transformed in its largest percentage to thermal energy. During high speed sliding, contact patches are formed. An analytical treatment of stresses (or displacement) and temperature distribution near the contact patches is necessary. A transient finite element heat conduction analysis has shown (ref. 14) that within a very short time after establishment of the contact zone the temperature distribution approached a steady state relative to a stationary observer. The length of time required to reach this quasi-steady state is so short that it may be concluded that within the contact patches a steady state temperature distribution occurs. Therefore it is not necessary to do a transient temperature analysis. A finite element formulation will be done for linear steady state. The formulation will be given in a form that could be expanded to inelastic, non-linear problems.

The advantage of the Finite Element Method is that it is possible to model finite geometry of complex shapes or different material properties. Both temperature and stress analysis could be done by similar modeling. Indeed, a thermomechanical analysis could

be carried out using one element grid and two linked finite element programs. The major difficulty in applying a Finite Element Method is that the convection operators are nonsymmetric. For instance the Galerkin Finite Element Method is successful when applied to linear symmetric operators, but these methods usually give spurious oscillations in their solutions when applied to convection dominated problems. A "streamline upwind scheme" (ref. 10) is used to deal with this problem by adding an artificial conductivity in a manner which stabilize the solution without destroying the physics of the problem.

In this work, a review of literature about the principal subjects is given, followed by a formulation of the weak form for the heat transfer equation and the thermoelasticity equation. Then a finite element formulation is developped for both thermal and thermoelastic equation for a two dimension solid. The resulting finite element program, which gives the displacement and the temperature distribution, is first compared to an analytical solution such as a semi-infinite plane under a heat flux (ref. 1). The program is then used to a problem of rubbing contact at high velocities in a gas path seal.

Chapter 2

LITERATURE REVIEW

The heat transfer theory started with Fourier's law of heat conduction:

$$q = -k A \frac{dT}{dx}$$

When the body is moving with a given velocity, a convection term is added to the equation (ref. 13 & 17). The use of Galerkin Finite Element Method to solve the heat problems for a moving body give rise to spurious oscillations. These oscillations can be removed in this case by severe mesh refinement which undermines the practical utility of the methods (ref. 8, 9 and 10).

New schemes were developped trying to deal with this deficiency. The first scheme appeared by Roache in ref.6 as a classical upwind difference scheme. It has been noted that the Galerkin Finite Element Method produces central difference type approximations to the advection (conduction) term. In finite difference theory, the adverse behavior of central differences in these circumstances has long been noted. But this method was considered as inaccurate.

Heinrich proposed a new scheme (ref. 8). The Finite Element Method is applied using weighted residual formulation with bilinear quadrilateral element shape functions, and non-symmetric weighting functions which are different from the shape functions, and depend on parameters which allow the amount of

"upwinding" to be controlled. An increase in accuracy could be obtained by varying these parameters from element to element. This method is now known as Petro-Galerkin method. But the two dimensionnal quadrilaterals proposed by ref. 8 distord the diffusion (conduction) term when upwinding is applied. It seems very difficult to find an upwinding function that does not disturb the diffusion (conduction) operator, yet upwinds the advection (convection) term. Hansen and Von Flotow (ref. 16) noted that it might be better to apply upwind weighting to the advection (conduction) term only and central to the remainder of the equation.

Another simpler technique proposed by Hushes (ref. 9) called quadrature upwinding was based on moving the integration points in the Galerkin Finite Element Method. But he came later with Brook (ref. 10) to propose a new multi-dimensionnal upwind scheme. The method was applied successfully to one dimension, and then generalized for two dimensions. This method, called "streamline upwind scheme", is applied to the advection-diffusion equation, and then to Navier-Stokes equations.

The thermoelasticity equation is derived from the principles of thermodynamics. A simple formulation of the equation is presented in ref. 2 & 3 as:

$$\mu U_{i,jj} + (\lambda + \mu) U_{j,ji} - (3\lambda + 2\mu) \alpha T_{,i} + F_{i} = 0$$

Together with the heat transfer equation, the thermoelasticity equation (two equations in dimension two) leads to the determination of the displacement and temperature fields in a thermomechanical

problem such as the problem of rubbing contact at high sliding velocities.

The thermal analysis of bodies in sliding contact has attracted the interest of many investigators because of its importance in many situations in which friction occurs: bearing, seals, brakes, clutches,... Various methods have been proposed, but none has proven universally acceptable. Many surface temperature analyses have been based on heat source methods (ref. 1), in which the solution for temperature distribution due to a point source on a surface is used to develop the solution for a distributed heat flux within a contact patch on the surface of an infinite half space. The difficulties involved with application of heat source techniques to bodies of finite dimensions led to the development of integral transform technique presented by Ling (ref. 4). Although this method have been successfully applied to a number of problems with different geometries, its limitations to simple shapes and its mathematical sophistication have kept this from being widely used by engineers.

Kennedy tried to solve the problem of rubbing contact at high sliding velocities by using the Finite Element Method. He applied the problem to two examples: aircraft disk brakes and gas path seals in turbine engine (ref. 11). The first examples was presented before in the study of transient temperature in disk brakes in ref. 5, considered as one of the first documention that use Finite Element Method in such problems. He retreated the second example experimentally and analytically in ref. 14 & 15. In ref. 11,

Kennedy used one element grid and two linked finite element programs to make a thermomechanical analysis of the contact.

Chapter 3

FORMULATION OF THE PARTIAL

DIFFERENTIAL EQUATION

3-1. Heat transfer:

Let k_{ij} , the thermal conductivity, be constant, let ρ , the density, and C_p , the specific heat be constant. Let q be the heat flux. In a steady state, the heat transfer partial differential equation for a moving body with a constant velocity V, is:

$$k_{ij} T_{,ij} - \rho C_p V_i T_{,i} + q = 0$$

The first term represents the conduction heat transfer. The second term represents the convection heat transfer. The problem defined in the equation above could be given after applying Galerkin's method, as:

Find $T \in H^2$ for all $W \in H^0$ scuh that:

$$\int_{\Omega} \left[W k_{ij} T_{,ij} - W \rho C_p V_i T_{,i} + W q \right] d\Omega = 0$$

Where T is assumed to satisfy the essential boundary

conditions. An integration by parts allows us to rewrite the problem as:

Find $T \in H^1$ for all $W \in H^1$ such that:

$$\int_{\Omega} \begin{bmatrix} W_{,j} k_{ij} T_{,i} + W P C_{p} V_{i} T_{,i} \end{bmatrix} d\Omega = \int_{\Omega} W q d\Omega$$

Here homogenous natural boundary conditions have been assumed in those sections of the boundary where T is not specified.

3-2. Thermoelasticity:

The constants λ and μ are respectively Lame's constant and shear modulus. They are related to Young's modulus E and Poisson's ratio ν by:

$$\lambda = \frac{v E}{(1 + v) (1 - 2 v)}$$
; $\mu = \frac{E}{2 (1 + v)}$

The Navier's equation, with temperature changes, in terms of displacement U is given by:

$$\mu U_{i,jj} + (\lambda + \mu) U_{j,ji} - (3\lambda + 2\mu) \alpha T_{,i} + F_{i} = 0$$

Where α is the coeficient of the thermal expansion and F_{i} is the body force.

Applying the Galerkin method to the equation above within an element results in the following formulation:

Find $U \in H^2$, $T \in H^1$ for all $W \in H^0$ such that:

$$\int_{\Omega} \left[\begin{array}{ccc} W & \mu U_{i,jj} + W (\lambda + \mu) U_{j,ji} - W (3\lambda + 2\mu) \alpha T_{,i} \\ + W F_{i} \end{array} \right] d\Omega = 0$$

After an integration by parts, we write the formulation as: Find $U \in H^1$, $T \in H^1$ for all $W \in H^1$ such that:

$$\int_{\Omega} \begin{bmatrix} W_{,j} & U_{i,j} + W_{,i} & (\lambda + \mu) & U_{j,j} + W & (3\lambda + 2\mu) & \alpha & T, i \end{bmatrix} d\Omega$$
$$= \int_{\Omega} W F_{i} d\Omega$$

This equation, called the weak form, could be obtained if the law of conservation of energy is used.

•

.

Chapter 4

FINITE ELEMENT FORMULATION

4-1. Heat transfer:

4-1-1. Streamline upwind scheme:

The heat transfer equation has a convection operator which has been shown to carry spurious oscillations in finite element solution (ref. 10). The conventional approach to mitigate these oscillations is to introduce an artificial diffusion (conduction) term in the heat transfer equation. This method is called "streamline upwind scheme".

The weak form becomes:

$$\int_{\Omega} [W_{,i} (k_{ij} + \hat{k}_{ij}) T_{,j} + W \rho C_{p} V_{i} T_{,i}] d\Omega = \int_{\Omega} W q d\Omega$$

If the artificial conductivity \hat{k}_{ij} is correctly chosen, no oscillation will occur in the Galerkin Finite Element formulation. In ref. 10, the following technique is presented:

Assume $\hat{k}_{ij} = \hat{k} \hat{u}_i \hat{u}_j$

where $\hat{u}_{i} = \frac{u_{i}}{|| u_{i} ||}$ with $|| u_{i} ||^{2} = u_{i} u_{i}$ and $u_{i} = \rho C_{p} V_{i}$

k is a scalar artificial conductivity.

Assume that the coordinates are chosen such that locally x_1 direction is aligned with streamlines and the x_2 -direction is perpendicular. Then the artificial conductivity matrix in this coordinate system is:

$$\hat{k} = \hat{k} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

In case of bilinear quadrilateral, in two dimension, \hat{k} is chosen as:

$$\hat{k} = \frac{1}{2} \left(\hat{\xi}^{i} \xi^{j} h_{\xi} + \hat{\eta}^{i} \eta^{j} h_{\eta} \right)$$

 $\hat{\boldsymbol{\xi}}$ and $\hat{\boldsymbol{\eta}}$ define the location of the quadratic point and are given by:

where
$$\begin{cases} \hat{\xi} = \coth \alpha_{\xi} - \frac{1}{\alpha_{\xi}} \\ \hat{\eta} = \coth \alpha_{\eta} - \frac{1}{\alpha_{\eta}} \\ \alpha_{\xi} = \frac{u_{\xi} h_{\xi}}{2k} \\ \alpha_{\eta} = \frac{u_{\eta} h_{\eta}}{2k} \end{cases}$$

 h_{ξ} and h_{η} are the element length (Fig. 1).

Figure 1. Typical four-mode quadrilateral finite element geometry.

u and k are evaluated at the origin of the element $in\,\xi-\eta$ coordinates. α_i could be expressed by:

$$\alpha_{i} = \frac{\rho C_{p} V_{i} h_{i}}{2 k} ; i = \xi, \eta$$

4-1-2. Heat transfer finite element formulation:

The weak form is know given by:

$$\int_{\Omega} [W_{,i} (k_{ij} + \hat{k}_{ij}) T_{,j} + W \rho C_{p} V_{i} T_{,i}] d\Omega = \int_{\Omega} W q d\Omega$$

If the body is divided into a number of finite elements, the weighting function W and the temperature distribution T within a discrete element may be approximated by:

$$W = W_{I} N_{I}$$
$$T = T_{I} N_{I}$$

Where N_I is the shape (interpolation) function of the element. W_{I} and T_{I} are constant at the nodes. The majuscule subscripts I indicate the node number.

Substituting these approximations into the weak form we get:

$$\int_{\Omega} [W_{I} N_{I,j} (k_{ij} + \hat{k}_{ij}) T_{J} N_{J,j} + W_{I} N_{I} (\rho C_{p} V_{i}) T_{J} N_{J,i}] d\Omega$$
$$= \int_{\Omega} W_{I} N_{I} q d\Omega$$

which may be simplified as follows:

$$\{ \int_{\Omega} [N_{I,i} (k_{ij} + \hat{k}_{ij}) N_{J,j} + N_{I} (\rho C_{p} V_{i}) N_{J,i}] d\Omega \} T_{J}$$
$$= \int_{\Omega} N_{I} q d\Omega$$

In the matrix notation, these equations has the following form:

[K] [T] = [Q]

where [K] =
$$\int_{\Omega} [N_{I,i} (k_{ij} + \hat{k}_{ij}) N_{J,j} + N_{I} (\rho C_{p} V_{i}) N_{J,j}] d\Omega$$

is the stiffeness matrix.

$$[T] = T_{J}$$

$$\left[\begin{array}{c} Q \end{array}\right] = \int_{\Omega} N_{I} q d\Omega$$

These equations are the finite element equations which will be formed, assembled, and solved for the temperature distribution through the body. Because of non-symmetry of the second term in the stiffeness matrix [k], its presence require the use of solution routines different from those used in most finite element programs.

To compare the solution obtained with the solution without the use of the upwind scheme, we can just set $\hat{k}_{ij} = 0$. The same finite element equations can also be used for both stationary and moving components of a sliding system by setting V = 0 for elements in the stationary body.

4-2. Thermoelasticity:

The weak form of the thermoelasticity equation was found to be:

$$\int_{\Omega} \begin{bmatrix} W_{,j} \mu U_{i,j} + W_{,i} (\lambda + \mu) U_{j,j} + W (3\lambda + 2\mu) \alpha T_{,i} \end{bmatrix} d\Omega$$

$$= \int_{\Omega} W F_{i} d\Omega$$

The weighting function W, the displacement distribution U, and the temperature distribution T, within a discrete element may be approximated by:

$$W = W_{I} N_{I}$$
$$U = U_{I} N_{I}$$
$$T = T_{I} N_{I}$$

where the majuscule subscripts indicate the node number and N are
the shape function defining the type of element. For some elements,
the shape functions are given in the appendix.
$$W_I$$
, U_I and T_I are
constants at the nodes.

After substituting these approximations into the weak form, we get:

$$\int_{\Omega} \begin{bmatrix} W_{I} & N_{I,j} & U_{J} & N_{J,j} + W_{I} & N_{I,i} & (\lambda + \mu) & U_{J} & N_{J,j} \end{bmatrix}$$
$$+ W_{I} & N_{I} & (3\lambda + 2\mu) & \alpha & T_{J} & N_{J,i} \end{bmatrix} d\Omega = \int_{\Omega} W_{I} & N_{I} & F_{I} & d\Omega$$

which may be simplified as follows:

E

$$\{ \int_{\Omega} [N_{\mathbf{I},j} \mid N_{\mathbf{J},j} + N_{\mathbf{I},i} (\lambda + \mu) \mid N_{\mathbf{J},j}] d\Omega \} U_{\mathbf{J}}$$

$$+ \{ \int_{\Omega} [N_{\mathbf{I}} (3\lambda + 2\mu) \mid \alpha \mid N_{\mathbf{J},i}] d\Omega \} T_{\mathbf{J}} = \int_{\Omega} N_{\mathbf{I}} F_{\mathbf{I}} d\Omega$$

These equations can be written in the matrix notation as:

$$[K_{\rm E}] [U] + [K_{\rm ET}] [T] = [F]$$

where [K_E] = $\int_{\Omega} [N_{I,j} \mu N_{J,j} + N_{I,i} (\lambda + \mu) N_{J,j}] d\Omega$ is the

elastic stiffeness matrix.

 $\begin{bmatrix} U \end{bmatrix} = U_{J}$ $\begin{bmatrix} K_{ET} \end{bmatrix} = \int_{\Omega} \begin{bmatrix} N_{I} (3\lambda + 2\nu) \alpha N_{J,i} \end{bmatrix} d\Omega \text{ is the coupled}$

stiffeness matrix.

 $[T] = T_{1}$

$$[F] = \int_{\Omega} N_{I} F_{I} d\Omega$$

Based on the equations above and the heat transfer finite element equations, defined in the previous section, a finite element program has been written. This program, which will be used in a thermomechanical analysis, will give the displacement and the temperature distribution through the body. It should be noted that one element grid can be used. With this program simpler problems could be treated. For example:

-Heat transfer without thermal stresses problem (an example of

this problem is given later): Set no forces and $\alpha = 0$.

-Elasticity problem without temperature change: Set no flux.

.

Some basic routines and a typical input data are given in the appendix.

Chapter 5

PROBLEMS AND SOLUTIONS

5-1. Semi-infinite solid under heat friction:

5-1-1. Description of the problem:

The semi-infinite source strip is defined by: $x \in [-b,b]$; y $\in [0, \infty]$; in the plane z = 0. The heat is applied at the rate Q per unit time per unit area over the strip. The surrounding media moves across it with velocity V in the direction of the x-axis. This problem was treated by Carslaw and Jaeger (Ref. 1) using the heat source method.

Fig.2-Semi-infinite solid under friction.

5-1-2. Finite element method:

The problem defined above is treated by the finite element program. The elements used in the mesh are quadrilateral (linear or quadratic). The heat flux is applied uniformly distributed on a width of 2b at the nodes. Four meshes were used, which are:

- mesh 1: 200 elements, 231 nodes, four-node quadrilateral element, with upwinding (Fig. 3).
- mesh 2: 200 elements, 231 nodes, four-node quadrilateral element, without upwinding.
- mesh 3: 300 elements, 981 nodes, eight-node quadrilateral element, with upwinding.
- mesh 4: 460 elements, 1493 nodes, eight-node quadrilateral element, with upwinding.

5-1-3. Results:

Carslaw and Jaeger (Ref. 1) gave the temperature as the following integral:

$$T = \frac{2KQ}{\pi kV} \int_{x-B}^{x+B} e^{u} K_0 (Z^2 + u^2)^{1/2} du$$

where $K_0(x)$ is the modified Bessel function of the second kind of order zero and X, Z, B are dimensionless quantities introduced as:

$$X = \frac{Vx}{2K}$$
, $Z = \frac{Vz}{2K}$, $B = \frac{Vb}{2K}$; with $K = \frac{k}{\rho C_p}$

Some values of the surface temperature of the solid are shown in Fig. 4 for B = 10. The curve represents

.

heat friction".

•

1 -----

•

•

.

 $(\pi \text{TkV}/2\text{KQ})$ vs. (x/b) given by Ref. 1. The results by finite element method, for each mesh, is plotted on the same representation.

5-1-4. Discussion:

When the quadratic elements (8 nodes) are used the curve $(\pi \text{ TkV/2KQ})$ vs. (x/b) approaches the one given by the heat source method (Ref. 1). When a smaller number of linear elements (4 nodes) is used the curve is less accurate but has the same pattern. The oscillations in the solution are minimized when the upwinding is used. But it is still necessary to make a mesh refinement in order to get accurate results.

5-2. Gas path seals:

5-2-1. Description of the problem:

The gas path seals are used in the turbine engines of modern aircraft to prevent the axial flow of working fluid (air) around rotating engine components. Reduction of the clearances between rotating and stationary component of these seals can decrease the consumption of the specific fuel and increase the effeciency of the engine. However, such reduction in clearance may result in occasional rubbing between the rotating and the stationary seal components as engine deflection occurs. These rubs, which occurs at very high sliding speeds, can cause high surface temperatures, excessive wear of the seal components, and possible damage to the engine. The development of gas path seal designs have been retarted by an incomplete understanding of the temperatures, stresses, and deformations which occur during high speed seal rubs (Ref. 11).

An attempt to get the temperature and deformation in this sliding system is done using the finite element analysis. A model has been developed to simulate the rubbing contact which occurs in gas path seals between the rotating knife edge and a stationary seal segment. The outer gas path seal, assumed to have a circular section with 5 layers (Fig. 5 & 6), is rotating at 20,000 r.p.m.. The friction force is taken as 100 lb.. The material properties are given in Table 1. On the external surface the temperature is taken to be 70°F and the displacement is zero. On the internal surface the flux, considered concentrated at the lower point is taken to be:

 $q = N \lor V = 100 x (0.3) x (20,000 x 2\pi x 4.85)$

 $= 1.8284 \times 10^7$ BTU/min in²

where μ is the friction coefficient.

5-2-2. Finite element method:

The thermomechanical program developed before is used to the rubbing contract problem. A finite element mesh based on quadratic quadrilateral (8 nodes) elements, shown in Fig. 7, is used in the development of the model.

5-2-3. Results:

3-1. Temperature:

Fig.5_High pressure turbine outer gas path sea!.

Table 1

ι

•

Material properties

Layer	1	2	3	4	5
Int. radius (in.)	4.85	4.91	4.94	4.97	5.00
Ext. radius (in.)	4.91	4.94	4.97	5.00	5.11
Material	100 YSZ	85% YSZ 15% CoCr Al Y	70% YSZ 30% CoCr Al Y	40% YSZ 60% CoCr Al Y	MAR-M- 50g
Young's modulus (1b/in ²)x10 ⁶	2.00	2.00	8.00	17.75	15.60
Poisson's ratio	0.25	0.26	0.27	0.28	0.30
Coef. of expansion (in/in ^o F)x10 ⁻⁶	4.83	7.70	8.38	9.52	12.20
Thermal cond. (BTU/min in ^O F)x10	8.11	16.30	20.95	25.52	422.98
Density (lb/in ³)	0.155	0.180	0.205	0.254	0.320
Specific heat_2 (BTU/1b ^O F)x10	0.161	0.161	0.161	0.158	0.155

Fig.7-Finite element mesh for gas path seal friction problem.

٠

. . •

24

T=70°F, U=0.

•

•

•••

æ

The finite element results give the temperature at any node. A plot of the temperature on the internal surface vs. the angle near the contact is given in Fig. 8. A peak of temperature occurs at the location of the friction contact.

3-2. Deformation:

The finite element results give the displacement in x-direction and in y-direction of any node. The curve of the deformation in x-direction vs. the angle for the interior surface is given in Fig. 9. The displacement is positive for the nodes at the right of the friction contact and negative for the nodes at its left. The curve of the deformation in y-direction vs. the angle is given in Fig. 10. This curve presents a peak at the friction contact.

5-2-4. Discussion:

At the location of the friction contact, the temperature and the deformation are increased rapidly. The temperature might reach the melting point of the material. The temperature peak was predicted by Marsher (Ref. 12) and confirmed by Kennedy (Ref. 11). The latter conformed also that the maximum amount of deformation occurs on the contact surface, with magnitudes decreasing very rapidly in a direction normal to the surface.

The oscillations that appear clearly in the x-direction displacement (midside node) are due to the presence of the oscillations in the temperature distribution. When the

Fig.8-Internal temperature distribution under friction near contact.

•

ł

,

ι

upwinding term is increased, the magnitude of temperature and displacement decrease but the oscillations don't vanish.

Chapter 6

CONCLUSIONS

A finite element program has been developed which can efficiently and accurately predict temperature and deformation distribution in a thermomechanical problem such as sliding systems. The method includes velocity effects with the use of the streamline upwind scheme which eliminates spurious oscillations and is therefore very useful in cases involving high speed sliding. The comparison with some results that used heat source method shows the accuracy of the method. A special application to gas path seal problem shows the existence of a peak in the temperature and deformation near the contact, indicating a possibility of melting and excessive wear which might provoke an early thermomechanical failure. Further studies could investigate the importance of thermal conductivity of the moving and stationary component on decreasing surface temperature and deformation.

REFERENCES

- 1. H.S. Carslaw & J.C. Jaeger: "Conduction of heat in solids". 2nd edition. Clarendon Press, Oxford, (1959).
- B.A. Boley & J.H. Weiner: "Theory of thermal stresses". Wiley Inc, (1960).
- 3. A.D. Kovalenko: "Thermoelasticity: Basic theory and application". Translated from Russian by D.B. Macvean. Wolters-Noordhoff publishing Groningen. Netherlands. (1969)
- 4. F.F. Ling: "Surface mechanics". Wiley, N.Y., (1973).
- F.E. Kennedy & F.F. Ling: "A thermal, thermoelastic, and wear simulation of a high-energy sliding contact problem". Jour. Lubr. Tech., Vol. 97, 497-508, (jul. 1974).
- 6. P.J. Roache: "Computationnal fluid dynamics". Hermosa publishers. Alburquerque, (1976).
- I. Christie, D.F. Griffiths, A.R. Mitchell, and O.C. Zienkiewicz: "Finite element methods for second order differential equation with significant first derivatives". Int. Jour. Num. Meth. Engng., Vol. 10, 1389-1396, (1976).
- J.C. Heinrich and O.C. Zienkiewicz: "Quadratic finite element schsemes for two-dimensionnal convective-transport problems". Int. Jour. Num. Meth. Engng., Vol. 12, 1359-1365, (1978).
- 9. T.J.R. Hughes: "A simple scheme for developping 'upwind' finite element". Int. Jour. Num. Meth. Engng. Vol. 12. 1359-1365. (1978).
- 10.T.J.R. Hughes and A. Brooks: "A multi-dimensionnal upwind scheme with no crosswind diffusion". California institue of technology, Pasedena. CA.
- 11.F.E. Kennedy: "Thermomechanical phenomena in high speed rubbing". Wear, 59. 149-163, (1980).
- 12.W.D. Marscher: "A phenomenological model of abradable wear in high performance turbomachinery". Wear, 59. 191-211. (1980).
- 13.J.P. Holman: "Heat transfer". Chap 1 & 5. Mc Graw-Hill Inc. (1980).

:

- 14.F.E. Kennedy: "Surface temperature in slinding systems. A finite element analysis." Jour. Lubr. Tech., Vol. 103, 90-96.(Jan. 1981).
- 15.F.E. Kennedy: "Single pass rub phenomena : Analysis and experiment". Jour. Lubr. Tech., Vol. 104, pp582. (Oct. 1982)

i

ł

- 16.J.S. Hansen & A.H. Von Flotow:"Finite element operators: Inexpensive evaluation of upwind schemes". Int. Jour. Num. Meth. Engng., Vol. 18, 77-88. (1982).
- 17.H.Wolf:"Heat transfer". Harper & row publishers, N.Y., (1983).
- 18.R.L. Mullen & R.C. Hendricks: "Finite element formulation for transient heat treat problems". NASA. Technical Memorandum 83070, (Mar. 1983).

Appendix I

SHAPE FUNCTIONS N_{I}

1-Linear quadrilateral element:

!

!

į

$$N_{1} = \frac{1}{4} (1 - \xi) (1 - \eta)$$

$$N_{2} = \frac{1}{4} (1 + \xi) (1 - \eta)$$

$$N_{3} = \frac{1}{4} (1 + \xi) (1 + \eta)$$

$$N_{4} = \frac{1}{4} (1 - \xi) (1 + \eta)$$

2-Quadratic quadrilateral element:

$$N_{1} = -\frac{1}{4} (1 - \xi)(1 - \eta)(1 + \xi + \eta)$$

$$N_{2} = -\frac{1}{4} (1 + \xi)(1 - \eta)(1 - \xi + \eta)$$

$$N_{3} = -\frac{1}{4} (1 + \xi)(1 + \eta)(1 - \xi - \eta)$$

$$N_{4} = -\frac{1}{4} (1 - \xi)(1 + \eta)(1 + \xi - \eta)$$

$$N_{5} = \frac{1}{2} (1 - \xi^{2})(1 - \eta)$$

$$N_{6} = \frac{1}{2} (1 + \xi)(1 - \eta^{2})$$

$$N_{7} = \frac{1}{2} (1 - \xi^{2})(1 + \eta)$$

$$N_{8} = \frac{1}{2} (1 - \eta^{2})(1 - \xi)$$

ORIGINAL PAGE IS OF POOR QUALITY

1

;

Appendix II

STIFFENESS MATRIX ROUTINE

EUPFOUTINE CETIF(X.T.IEX.NGF.MTYFE.EK) 0001 0007 0003 LETRA CANDA THIE EURROUTINE CALCULATEE THE VALUE OF THE STIFFNESS MATEIX CANDA FOR ANY DREER TWO DIMENSIONAL JEDFARAMETRIC ELEMENT CANDA NAME TYPE USAGE 3331 2238 ****

 CT3733
 CT3733

 CT3733
 D2.DE
 FF.61 BE

 CT3733
 D7.DE
 FF.61 BE

 CT3733
 D7.DE
 FF.61 BE

 CT3733
 D7.DE
 FF.62 BE

 CT3733
 D7.DE
 FF.62 BE

 CT3733
 D7.T
 D7.EGE

 CT3733
 D7.T
 D7.EGE

 CT3733
 D7.EGE
 D7.EGE

 CT3733
 D7.EGE
 D7.EGE

 CT3733
 D7.EGE
 D7.EGE

 CT3733
 D7.EGE
 D7.EGE

 CT3733
 D7.T
 D7.EGE

 CT3733
 D7.FE
 D7.EGE

 CT3733
 D7.FE
 D7.EGE

 CT3733
 D7.FE
 D7.EGE

 CT3733
 SUE
 D1.EGE

 CT3733
 SUE
 CALLED:

 CT3733
 CT3733
 GTF.N1

 CT3733
 SUE
 CALLED:

 CT37 17.04 F (Y)/E (E1A) F (Y)/E (E1A) F (I)/E (ETA) F (I)/E (3331 **** 1771 **** **** ***1 3>30 **** **** **** *** 1157 *** 3331 RETURNE THE C MATRIX INITIALIZE THE EMAFE FUNCTIONS MATRIX MULTIFLICATION MATRIX TRANSPOSE MULTIFLICATION **** 0031 0033 0023 **** C034 C035 0036 0027 C1111 C1111 C11111 *** *************** **** 0021 0074 0040 0041 0042 0043 8843 0046 0047 0042 0049 ExANS FET OF ELEMENT INFORMATION BASA 00151234 00551234 00055554 00055554 00055554 ND=NDGREE#JEX JF(IE .NE. IEX .DR. NG .NE. NGX) CALL COHFJ(JEX;NGX) ND2=ND4ND 00 1 11=1+N12 54(11)=0.0 1 ETTAT ZERD DUT BOLY FORCE VECTOR SANT 0058 0059 0060 č DD 22 II=1+IE DE 27 II=1+NDBREF IF (NTYPE +NE, MTYPE) CALL CHAT(HTYPE) IF (NTYFE .NE. MTYFE) CALL CM DO 10 11=1,NG R=0.0 DXIF=0.0 DYDF=0.0 DYDF=0.0 DYDF=0.0 DD 5 12=1,IE R=R4x(12)#FEE(12,I1) DXDE=x(12)#ISUF(12,I1)+DXDF DXDE=x(12)#ISUF(12,I1)+DXDF DYDF=Y(12)#DEDE(12,I1)+DYDF DYDF=Y(12)#DEDE(12,I1)+DYDF DD 4 12=1+1E 22 0061 0062 0063 0064 0065 0065 0067 0068 0069 0076 0071 0072 0073 5 D0 4 12=1+1E DFEE(1+12)=D5DF(12+13)=DYDE-D5DE(12+11)=DYDF DFEE(2+12)=DXDF#154E(12+11)-DXDE=D5HF(12+11) JACOB=DXDP=DYDE-DXDE=DYDF 0074 0075 0076 0076 6

ORIGINAL PAGE IS OF POOR QUALITY

078 079 0050	IF (JALUB ALTA JHINJ JHINSJACH) IF (JACCF AGT, JHAXY JHAXY JACOI IF (JACCF ALE, 0.0) STOP 4
	IN CALCULATE THE "H" MATRIX BARAN
	<pre>I CALL ALL THE 'P' MATRIX STATUS I CALL LATE THE 'P' MATRIX STATUS II CALL CHART THE 'P' MATRIX STATUS II CALL CHART THE 'P' MATRIX STATUS II CALL CHART CHART THE 'P' THE 'P' TO 'P' II CALL CHART CHART CHART THE 'P' II CALL CHART CHART CHART CHART CHART THE 'P' II CALL CHART CHART CHART CHART CHART CHART THE 'P' II CALL CHART CHART CHART CHART CHART CHART CHART CHART CHART THE 'P' II CALL CHART CH</pre>
0155 0156 0157 0158 0159 0160 0161 0162	ID 8 12=1,ND2 8 5L(12)=5L(12)+5LT1(12)\$WW+(SKT2(12)+5LT3(12))\$W4IT(11) 10 CDNTINUE IF (JE.NE.C) RETURN JE=1 CDNTINUE PETURN END

35

BUEFRUTINE CMATIMITES INFLICIT REALUE (A-H+D-2) REALUE NOVEHATIES COMMON JMATZ EY(E)+FR(E)+ALTHA(A)+ λ (C)+TR(A)+ED(A)+CF(A)+ SV(A)+TV(A)+FR(A) CDHMON JFEF3Z NITES(A+A)+REV(a+A)+AL FIMENSIDE A(C+G)+F(a+G)+UFE(a+G)+F1(a+G) TO A(C+G)+F(a+G)+UFE(a+G)+F1(a+G) 1 V(c), YV(c), EF(d), A(c,c), KEV(c,c), A(c), FD(d), FD(d), FD(d), EDFMIN, /FE'2/ WIYE, F(c,c), KEV(c,c), A(c), FD(d), FD(2.5 3.0 CARAT FLANE STRAIN STAR FLANE STRAIN \$\$\$\$ x=eY(NTYFE)/(1.4PK(NTYPE))/(1.-2.4FK(NTYFE)) $x_1=x_4(1.-FK(NTYFE))$ $y_2=x_3FK(NTYFE)$ AL=-0.5FY(NTYFE) AL=-0.5FY(NTYFE) AL=-0.5FY(NTYFE) AL=-0.5FK(NTYFE)/(1.-2.4FK(NTYFE)) NFITE(4.200) AL=T0.5(1.-2.4FK(NTYFE)/(1.-2.4FK(NTYFE)) K(2.2)=x1 K(2.2)=x1 K(2.2)=x2 K(4.4)=x3(1.-2.4FK(NTYFE)) K(2.5)=xK(NTYFE)+UFW(5.5) K(5.6)=VFW(5.5) K(5.5)=UFW(5.5) K(5.5)=UFW(5.5) K(5.5)=FRO(NTYFE)+UFW(6.6) RCFU(5.5)=RO(NTYFE) FCFU(6.6)=RO(NTYFE) F

Appendix III

INPUT DATA FORMAT

¥

.

Card type	Columns	Format	Description
1	1-80	20A4	Title to be printed at beginning of output.
2	1–5 5–10	15 15	(Number of elements in this problem. Number of nodes in this problem.
3	1–10 11–20	G10.4 G10.4	Young's modulus for material type 1. Yount's modulus for material type 2.
	•	•	• • •
	•	•	• • •
	51-60	G10.4	Young's modulus for material type 6.
4	1–10 11–20	G10.4 G10.4	Poisson's ratio for material type 1. Poisson's ratio for material type 2.
	•	•	• • •
	•	•	• • •
	51-60	G10.4	Poisson's ratio for material type 6.
5	1–10	G10.4	Expansion coefficient for material type 1.
	11-20	G10.4	Expansion coefficient for material type 2.
	•	•	• • •
	•	•	• • •
	51-60	G10.4	Expansion coefficient for material type 6.
6	1-10	G10.4	Conductivity in x-direction for
	11-20	G10.4	Conductivity in x-direction for material type 2.
	•	•	• • •
	•	•	• • •
	51-60	G10.4	Conductivity in x-direction for

material type 6.

7	1-10	G10.4	Conductivity in y-direction for material type 1.
	11-20	G10.4	Conductivity in y-direction for material type 2.
	•	•	• • •
	•	•	• • •
	•	•	
	51-60	G10.4	material type 6.
8	1-10	G10.4	Density for material type 1.
0	11-20	G10.4	Density for material type 2.
	•	•	• • •
	•	•	• • •
	• • • • •	•	• • •
	51–60	G10.4	Density for material type 2.
9	1-10	G10.4	Specific heat for material type 1.
	11-20	G10.4	Specific heat for material type 2.
	•	•	
	•	•	• • •
		•	
	51-60	G10.4	Specific heat for material type 6.
10	1-10	G10.4	Velocity in x-direction for material
			type 1.
	11-20	G10.4	Velocity in x-direction for material
			type 2.
	•	•	• • •
	•	•	• • •
	• 51_60	CIO 4	Velocity in v-direction for material
	51-00	610.4	type 6.
11	1-10	G10.4	Velocity in y-direction for material
			type 1.
	11-21	G10.4	Velocity in y-direction for material
			type 2.
	•	•	• • •
	•	•	• • •
	51-60	G10 4	Velocity in v-direction for material
	51 00	010.4	type 6.
12	1-10	G10.4	Element height for material type 1.
	11-21	G10.4	Element height for material type 2.
	•	•	• • •
	•	•	• • •

;

	51-60	G10.4	Element heigh for material type 6.
13	1-5 9-9	15 11	Node number Displacement fixity in x-direction at this node = 0 applied traction
	10-10	I 1	Displacement fixity in y-direction at
	11-11	11	Temperature fixity at this node = 0 given flux = 1 no temperature
	12-21	G10.4	x coordinate of node.
	22-31	G10.4	v coordinate of node
	32-41	G10.4	Force at node in x-direction
	42-51	G10.4	Force at node in y-direction
	52-61	G10.4	Flux or temperature at node
14	1-5 6-10 11-15	15 15 15	Element number Node number for first node on element Node number for second node on element
	•	•	
	•	•	• • •
	41-50 57-57 64-64	15 11 11	Node number for eigth node on element Material type for element Element type

Data cards can be omitted for nodes equispaced between node N_{i} and N $_{j}$ as long as the data for nodes N $_{i}$ and N $_{j}$ are included.

ORIGINAL PAGE IS OF POOR QUALITY

1

Example of input data

249 201	FA1 3	H 88 40	4L	1																					
.200	OCE+	070.	20	00E	+07	0.	ε¢	000	E+()7(•	17	75	E+	08	0.	\$	56()E ·	+ C• 1	e Q	.0	000)E (100
.250	0	Q.	.26	00		Ģ,	27	.00		•	0.	28	800)		٥.	3	0(+	5		Q	. 0	200	DE	+00
. 45;	305-	0::0	. 77	OVE	-05	<i>.</i>	83	BEO	E~(950	Ç.	95	:20	•E -	02	· C .	1	22(¢£ ·	- 0	2 Q	• 0	900	CE-	106
. 21	10E-	020	.16	305	(- ¢)	20.	. 20	095	E - 1	07	٥.	21	55	2E -	-0:	20	. 4	23	(°E	-0	10	.0	00	C∙€ ·	424
•£3	101 -	070	. 3 8	301	-0	e.	.2	0 Y S	E - 9	07	o.	25	552	2E -	0:	: ?	, A	23	¢£	- 0	10	••	. Q (:	٩Ľ	400
. 15	5	0	. 1	2		¢	. :	C Si			ç.,	23	54			Ŀ	. ?	2							
.3±	2 V E ·	- 22-3	• : 4	10 10	- 7.	10	. 1	± 1 ()F	٥2	с.	1	589	ΩE-	-73	20	. 1	55	Э£	- C	-				
,] + . C	2 - 11434361-1145114111111111111111111111111111111	2 4600 2 4600 2 50000000000000000000000000000000000	00000000000000000000000000000000000000	1 00009557774445034447285930050844577240005013044444444444444	いたます。 「「「「「」」」 「「」」」」 「「」」」」 「」」」 「」」」 「」」」」 「」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」 「」」」 「」」 「」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」」 「」」」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」			4 8858778490544275969000055774408489000099744084473362223.4454 1 551124514754759590005557440848900009974408484000000000000000000	L			000000000000000000000000000000000000000				<pre>control = control = c</pre>	00000000000000000000000000000000000000		2 ELLEFERANDOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC			00000000000000000000000000000000000000			
			0000	2.6.37	7423			441.1	520			00000	.00	00	OE	+++++	00000				+				

1

1.

	41	ORIGINAL PAGE IS
4.512 5.021 0 4.512 5.021 0 4.527 1.078 0 4.585 0.000000000 5.0000 0.000000000 0.00000000 0.000000000	. COORF + CCC. OUGOE + 00 . CUOOE + COC. GOODE + 01 . CUOOE + COC. GOODE + 01 . COOCE + COC. GOCOE + 01 . OCCOE + CCC. GOCOE + 01 . OCGOE + CCC. GOCOE + 01 . OCGOE + 000. OCOE + 0 . OQOOE + 000. QOODE + 0 . QOQOE + 000. QOODE + 0	220.0
1.102 1.576 2.049 1.576 2.071 1.626 2.908 4.166 3.574 3.574 3.613 3.613 4.166 2.908 4.576 2.074 4.576 2.075	0,000E+000,000E+0 0,000E+000,000E+0 0,000E+000,000E+0 0,000E+000,000E+0 0,000E+000,000E+0 0,0000E+000,000CE+0 0,0000E+000,000CE+0 0,0000E+000,000CE+0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.534 3.102 5.055 0.0000E400 5.110 0.0000E400 -5.055 0.0000E400 -5.110 0.0000E400 -5.110 0.0000E400 -4.526 1.076 2.4.534 1.102	D. DOCCE+0.00. CCOOL+C O. ODUCE+0.00. OSOCE+C O. CONOL+0.00. SOCCE+C C. ORODE+0.00. SOCCE+C U. OCCCE+0.00. SOCCE+C O. OCCCE+0.00. SOCCE+C O. DUCCE+000. SOCCE+C O. DUCCE+000. GCOOE+C O. OCCOE+0.00. GCOOE+C	07C.0 0 07C.0 00 00 00 00 0 0 0 0 0 0 0 0 0 0 0 0
D-4.576 2-4.626 2-4.186 2-4.186 2-566 0-3.536 0-3.574 2-5.613 3.674 2.574 2.	C.0000E+000.0000E+0 0.0000E+000.0000E+1 0.0000E+000.0000E+1 0.0000E+000.0000E+1 0.0000E+000.0000E+1 C.0000E+000.0000E+1 0.0000E+000.0000E+1 0.0000E+000.0000E+1 0.0000E+000.0000E+1	0070.0 0070.0 0070.0 00 00 0070.0
2-2.008 (-2.027 2-2.027 2-2.071 4.576 2-2.071 4.526 2-1.102 4.934 0-4.970 0.0000E+00 0-4.955 0.0000E+01 0-4.795 1.072	0.0000E+000.0000E+ 0.0000E+000.0000E+ 0.0000E+000.0000E+ 0.0000E+000.0000E+ 0.0000E+000.0000E+ 0.0000E+000.0000E+ 0.0000E+000.0000E+ 0.0000E+000.0000E+	00 00 00 00 00 00 00 00 00 00
10-4.499 2.014 10-4.513 2.021 10-3.514 3.514 10-3.525 3.525 10-2.827 4.671 10-2.021 4.513	0.000E+000.0000E+ 0.000CE+000.0000E+ 0.000CE+000.0000E+ 0.000CE+000.0000E+ 0.000CE+000.0000E+ 0.0000E+000.0000E+ 0.0000E+000.0000E+ 0.0000E+000.0000E+	00 00 00 00 00 00 00 00 00 00
00-4.940 00-4.955 00-4.955 00-4.770 00-4.486 00-4.486 00-4.486 00-4.047 00-3.493 00-3.493 00-3.504 00-3.504	0.0000E+000.0000E 0.0000E+000.0000E 0.0000E+000.0000E 0.0000E+000.0000E 0.0000E+000.0000E 0.0000E+000.0000E 0.0000E+000.0000E 0.0000E+000.0000E	00 00 00 00 00 00 00 00 00 00
00-2.812 00-2.002 00-2.002 00-2.008 00-1.065 00-4.910 00-4.925 0.00008+0 00-4.925 0.00008+0 00-4.945 1.959 00-4.959 00-4.959	0.000E+000.000E 0.000E+000.000E 0.000E+000.0000E 0.0000E+000.0000E 0.0000E+000.0000E 0.0000E+000.0000E 0.0000E+000.0000E 0.0000E+000.0000E	+00 +00 +00 +00 +00 +00 +00 +00
00-4.439 00-4.439 00-3.472 00-3.463 00-3.463 00-2.795 00-1.990 00-1.059 0.00000000000000000000000000000000000	0.0000E+000.0000E 0.0000E+000.0000E 0.0000E+000.0000E 0.0000E+000.0000E 0.0000E+000.0000E 0.0000E+000.0000E 0.0000E+000.0000E 0.0000E+000.0000E	+00 +00 +00 +00 +00 +00 +00
00-4.880 0.0000E+ 00-4.683 1.046 00-4.391 1.766 00-4.418 1.978 00-3.973 2.760 00-3.429 3.429	000.000E+000.0000 0.000E+000.0000 0.000E+000.0000 0.000E+000.0000 0.000E+000.0000 0.000E+000.0000 0.000E+000.0000	+00 +00 +00 +00 +00 +00

..

ł

::

ł

!

1.2

!

145 145 166	00-3.966 3.57% (0-).965 4.391 00-1.578 4.916	0.0030E4000.0030E406 0.0030E4000.0030E406 0.0000E4000.0030E400
147	000.00001+00-6.850 000.00001+00-6.850 000.00001+00-6.850 000.00001+00-4.910	0.0002+000.0000+00 0.0002+000.0002+00 0.0002+000.0002+00 0.00002+000.0002+00 0.00002+000.00002+00
152	004150 -4.840 006234 -4.900 00-1.193 -4.759	0.0000E4000.0000E400 0.0000E4000.0000E400 0.0000E4000.0000E400 0.000E4000.0000E400
155	00-1.200 -4.617 00-1.732 -4.605 00-1.753 -4.602	0.0000E+000.0000E+00 0.0000E+000.0000E+00 0.0000E+000.0000E+00
158	00-7.222 -4.360 00-7.246 -4.407 00-7.266 -4.434 00-7.659 -4.654	0.0000E+000.000E+00 6.0006E4000.0000E+00 C.0000E4000.0000E+00 A.600E4000.0000E+00
16.7	66-2.11E -3.715 66-2.11E -3.715 60-2.137 -1.736	6.0000E+000.000E+00 6.0000E+00.0.000E+00 6.0000E+000.0000E+00
160 166 167	00-21.01 -3.275 00-3.562 -3.275 00-3.562 -3.316 00-3.562 -2.764	C.CCCE+0CC.OCCE+0C C.CCCE+0CC.OCCE+0C C.CCCE+0CC.OCCE+0C C.CCCE+CCC.OCCE+0C
169 170 171	00-3.873 -2.783 00-3.873 -2.786 00-4.157 -2.180 00-4.706 -7.007	0,00024050,00002400 0,000024000,00002400 0,00024000,00002400 0,00024000,00002400
173	00-4.426 -1.525 00-4.454 -1.535 00-4.454 -1.535 00-4.451 -1.544	0.0005E+000.0005E+00 0.0000E+000.0005E+00 0.0005E+050.0005E+00 0.0005E+050.0005E+00
177 178 179	00-4.715 - POE3 000.0000E+00-4.525 000.0000E+00-4.525	C. 0C00E + 0C0.0000E + 00 0. CLOOE + 00C.0CC0E + CO C. 00C0E + 000.0CC0E + CO C. 00C0E + COQ.0CC0E + CO
180 181 182 183	00-1.212 -4.832 00-1.215 -4.832 00-1.215 -4.847 00-1.764 -4.691	C.CCCCE+0C0.CCCCE+00 C.CCCCE+0C0.CCCCE+00 C.CCCCE+CCO.CCCCE+00 C.OCCCE+CCO.CCCCE+00
164 185 185	CU-2.267 -4.448 DU-2.274 -4.462 OU-2.744 -4.159 DU-3.166 -3.773	0.0000E+000.0000E+00 0.0000E+000.0000E+00 0.0000E+000.0000E+00 6.0000E+000.0000E+00
189	00-3.175 -3.754 00-3.567 -3.336 00-3.908 -2.806	0,0002+000,00002+00 C,00002+000,00002+00 C,00002+000,00002+00 C,00002+000,00002+00
192	00-4.234 -2.221 00-4.495 -1.545 00-4.505 -1.553	0.0000E+000.0000E+00 0.0000E+000.0000E+00 0.0000E+000.0000E+00 0.0000E+000.0000E+00
193 196 197 198	00-4,744	0.0000E+000.0000E+00 0.0000E+000.0000E+00 0.0000E+000.0000E+00 0.0000E+000.0000E+00
195 200 201	00-1.215 -4.862 00-1.223 -4.876 00-1.275 -4.719	0.0000E+000.0000E+00 6.0000E+000.0000E+00 6.0000E+000.0000E+00 0.0000E+000.0000E+00
203	00-2.721 -4.465 00-2.721 -4.185 00-3.185 -3.776	C.OC30E+CCC.OC0E+CO C.OC0CE+CCC.CCCE+OC O.OC0CE+CCC.CCCE+OC
2000	6 00-3.932 -3.532 00-3.932 -3.523 00-3.932 -2.633 00-3.944 -2.633	6.000000000000000000000000000000000000
21 21 21	0 00-4.740 -7.734 1 06-4.222 -1.558 2 00-4.536 -1.563 3 60-4.773616	0.202911000.20021100 C.00210000000000000 C.00200100000000000000000000000000000000
156.27	4 000.0000000-4.985 5 000.000000-5.000 6 000.4348 -4.980 000.4348 -4.980	0,0000E+000.0000E+00 0,0000E+000.0000E+00 0,0000E+000.0000E+00 0,0000E+000.0000E+00
	00-1-230 -4.5Cc 9 30-1-725 -4.74E 0 00-2-2594 -4.50	6.0000E+000.0000E+00 0.0000E+000.0000E+00 0.0000E+000.0000E+00
	11 00:00:001 -4.210 22 00:-2.777 -4.210 23 00:-3.204 -3.815 24 00:-3.214 -7.830	0.000E+000.0002E+00 0.000E+000.0000E+00 0.000E+000.0000E+00 0.000E+000.0000E+00
	25 00-3.611 -3.373 6 00-3.556 -0.641	0.0007E+000.0000E+00 0.0000E+000.0000E+00

ì

42

.]

OF POOR QUALTY 1110 1.1.248 0.00071400.00001400 QUALTY 1211 0.00071400.00001400 0.00071400.00001400 QUALTY 1211 0.00071400.00001400 0.00071400.00001400 QUALTY 1211 0.00071400.00001400 0.00071400.00001400 QUALTY 1211 0.00071400.00001400 0.000014000.00001400 QUALTY 1211 1.100.00071400.000014000.000014000 0.000014000.000014000.0000140070.0 1211 1.100.00071400.000014000.000014000.000014000.0000140070.0 QUALTY 1211 1.100.00071400.000014000.0000014000.0000014000.000014000.000014000.0000014000.000014000.000				ÔRIGINAL DA
<pre></pre>				OF POOD PAGE IS
1.1.1 1.1.2 <td< th=""><th></th><th>60-4.285</th><th>-1-248</th><th>C. OCCVE+OUC. CCODET DUY QUALITY</th></td<>		60-4.285	-1-248	C. OCCVE+OUC. CCODET DUY QUALITY
1311 0.00 4.00 321 0.00000000000000000000000000000000000	230	00-4.563	-1,572	¢.0000124000.00002400
1120.0000Cf4466-5.110 0.0000f4000.0000f4007.00 1120.000Cf4466 -4.460 0.0000f4000.0000f4007.00 1100-1.220 -4.460 0.0000f4000.0000f4007.00 1100-1.220 -4.460 0.0000f4000.0000f4007.00 1100-1.220 -4.460 0.0000f4000.0000f4007.00 1100-1.220 -4.460 0.0000f4000.0000f4007.00 1111-2.420 -4.460 0.0000f4000.0000f4007.00 1111-2.420 -4.460 0.0000f4000.0000f4007.00 1111-2.420 -4.460 0.0000f4000.0000f4007.00 1111-2.420 -6.460 0.0000f44000.0000f4007.00 1111-2.420 -7.4914 0.0000f44007.00 1111-2.420 -7.4917 0.0000f44007.00 1111-2.4306 -2.2917 0.0000f44007.00 1111-2.4306 -2.2917 0.0000f44007.00 1111-4.4307 -6.412 0.0000f44007.00 1111-4.4307 -6.412 0.0000f44007.00 1112-4.4643 -1.407 0.0000f44007.00 1112-4.4643 -1.407 0.0000f44007.00 1112-4.4643 -1.407 0.0000f44007.00 1112-4.4643 -1.407 0.0000f44	231	000-4-801 000-0000E+00	6231)-2.025	C.0000E+CCO.0000E+CC 0.0000E+CCO.0000E+CC
10 10 <th10< th=""> 10 10 10<!--</th--><th>233 1</th><th>120.000CE+00</th><th>-5.110</th><th>0.0000000000000000000000000000000000000</th></th10<>	233 1	120.000CE+00	-5.110	0.0000000000000000000000000000000000000
232 112-1-22 -3-1014 0.00000000000000000000000000000000000	235	00-1.243	-4.560	C.0000E+00C.0000E+00
235 00-2.3277 -4.565 0.0000544000.0000644007.0.0 245 112-2.357 -4.505 0.0000544007.0000644007.0.0 241 10-3.744 -7.577 0.0000544007.0000644007.0.0 241 10-3.744 0.0700144007.0000644007.0.0 242 117-4.3160 -7.577 0.0000144007.000064407.0.0 244 10-4.017 -7.6817.0 0.0000144007.000064407.0.0 244 10-4.017 -7.6817.0 0.0000144007.000064407.0.0 244 112-4.3664 -1.6577 0.0000144007.0000044407.0.0 244 112-4.4644 -1.6577 0.0000144007.0000044407.0.0 244 112-4.4644 -1.6577 0.0000144007.0000044407.0.0 255 100 4.643 -1.6577 0.0000144007.0000044407.0.0 255 112 4.3807 -2.7877 0.0000444007.0000044407.0.0 255 100 4.644 -1.6577 0.0000444007.0000044407.0.0 255 100 4.644 -1.6577 0.0000644007.0000044407.0.0 255 100 4.644 <td< th=""><th>236 3</th><th>12-1.207</th><th>-3.014</th><th>0.0000E+000.0030E+0070.0</th></td<>	236 3	12-1.207	-3.014	0.0000E+000.0030E+0070.0
241 0.0 3.03 6.00001+000.0000000000000000000000000000	236	00-2.317	-4.565	0,0000E+000,0000E+00 0,0005E+000,0000E+0070,0
12.3 11.2 1.2 1.2 1.4 0.00000000000000000000000000000000000	245	112-2.835	-4.203	0,0000E+000,0000E+0070.0
243 112-3.40°C - 2.451 244 00-4.017 - 2.851 245 012-4.057 - 2.912 0.000014/007 0.000014/070.0 240 112-4.360 0.00014/070.000014/070.0 240 112-4.360 0.00014/070.000014/070.0 240 112-4.360 0.00014/070.000014/070.0 240 112-4.360 0.00014/070.000014/070.0 241 112 4.6676412 0.000014/070.000014/070.0 253 000 4.613 - 1.572 0.000014/070.000014/070.0 255 000 4.613 - 1.575 0.000014/070.000014/070.0 255 000 4.613 - 1.575 0.000014/070.000014/070.0 255 000 4.613 - 1.572 0.000014/070.000014/070.0 255 000 4.613 - 1.572 0.000014/070.000014/070.0 256 000 4.285 - 4.2977 0.000014/070.000014/070.0 266 112 3.2651 - 3.377 0.000014/070.000014/070.0 266 112 3.2651 - 3.377 0.000014/070.000014/070.0 266 112 3.2651 - 4.210 0.000014/070.000014/070.0 266 112 7.837 - 4.210 0.000014/070.000014/070.0 267 100 1.237 - 4.210 0.000014/070.000014/070.0 264 112 7.837 - 4.851 0.000014/070.000014/070.0 264 112 7.837 - 4.851 0.000014/070.000014/070.0 264 112 7.837 - 4.851 0.000014/070.000014/070.0 277 000 1.227 - 4.852 0.000014/070.0000014/070.0 277 000 1.227 - 4.852 0.0000014/070.0000014/070.0 277 000 1.227 - 4.852 0.00	242 3	112-3.285	-3.914	0.0000E+000.0000E+0070.0
112-4.05C -2.912 0.0000E4003.0000E4007.0.0 240 112-4.380 -2.912 0.0000E4003.0000E4007.0.0 241 112-4.380 -1.597 0.0000E4003.0000E4007.0.0 244 112-4.4803 -1.607 0.0000E4007.00000E4007 255 0.0044803.00000E4007.00000E4007 0.0000E4007.0000E4007 0.0000E4007.0000E4007 255 0.0044024.0000.0000E4007.0000E4007 0.0000E4007.0000E4007 0.0000E4007.0000E4007 255 0.0044024.0000.0000E4007.0000E4007 0.0000E4007.0000E4007.0.0 0.0000E4007.0000E4007.0.0 255 0.0044007.0000E4007.0000E4007.0.0 0.0000E4007.0000E4007.0.0 0.0000E4007.0000E4007.0.0 255 0.0044007.0000E4007.0000E4007.0.0 0.0000E4007.0000E4007.0.0 0.0000E4007.0.0 255 0.0044007.0000E4007.00000E4007.0.0 0.0000E4007.0.0 0.0000E4007.0.0 255 0.0032.0000E4007.0.0 0.0000E4007.0.0 0.0000E4007.0.0 0.0000E4007.0.0 256 1.0733.0447.0428.00000E4000.0000E4007.0.0 0.0000E4007.0.0 0.0000E4007.0.0 0.0000E4007.0.0 256 1.023.2487.4488.00000E4000.0000E4000.0000E4007.0.0 0.0000E4000.0000E4007.0.0 0.0000E4000.00000E4007.0.0 0.0000E4000.0000E4007.0.0	243 3	112-3,290	-3.451	D.0000E+000.0000E+0070.0 G.0000E+000.0000E+00
64-7 166-7 166-7 167-7 0 000000000000000000000000000000000000	141	112-4.055	-2.912	0.0000E+000.0000E+0070.C
14:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:	247	00-4.c13	-1.5%¢	0.0000E4000.0C00E400
256 0.0 4.8C1 6231 0.00064400,0004400 0.00064400 251 112 4.567 6372 C.00004400 0.00064400 0.00064400 253 102 4.563 -1.572 C.00004400 0.00064400 0.00064400 254 112 4.664 -1.407 0.000044000 0.00064400 0.00064400 255 004 4.285 -2.277 0.000044000 0.00064400 0.00064400 255 005 4.017 -2.297 0.000044000 0.00064400 0.00064400 255 005 4.017 -2.977 0.000044000 0.00064400 0.00064400 256 017 4.615 -2.977 0.000044000 0.00064400 0.00064400 256 017 -4.615 0.000044000 0.00064400 0.00064400 0.00064400 266 102 3.611 -3.217 0.000044000 0.00064400 0.00064400 0.00064400 0.00064400 0.00064400 0.00064400 0.00064400 0.00064400 0.00064400 0.00064400 0.000064400 0.00064400 <td< th=""><th>240</th><th>112-4.007</th><th>6412</th><th>0.0000E+000.0000E+0070.0</th></td<>	240	112-4.007	6412	0.0000E+000.0000E+0070.0
101 102 1	250	00 4.801	~.5231	0.000CE+000.0000E+00 0.0000F+000.0000E+0070.c
254 012 4.243 -4.2467 0.00000000000000000000000000000000000		00 4.563	-1.572	C.0000E+000.0000E+00
2255 00 4.285 -2.297 000000000000000000000000000000000000	254	112 4.664	-1.607	0.0000E+000.0000E+0070.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	255	00 4,285	-2.246	0.0000E+000.0000E+00 0.0000E+000.0000E+0070.0
236 12.2 1.045 1.4.515 0.00000000000000000000000000000000000	217	00 3.9AE	-2.849	0,0000E+000.0000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	255	112 4.055	-2.912	0.0000E+000.0000E+0070.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	260	212 3.690	-3.453	0.0000E+000.0000E+0070.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	242	00 3.214	-3.872	0.0000E+000.0000E+00 0.0000E+000.0000E+00
$\begin{array}{c} 263 & 102 & 2.477 \\ 267 & 00 & 2.301 \\ 268 & 002 & 3.57 \\ 268 & 002 & 3.57 \\ 268 & 002 & 3.57 \\ 112 & 2.352 \\ 268 & 112 & 2.352 \\ 268 & 112 & 2.352 \\ 268 & 112 & 2.352 \\ 268 & 112 & 2.352 \\ 277 & 001 & 2.352 \\ 277 & 001 & 2.352 \\ 277 & 001 & 2.237 \\ 277 & 001 & 2.242 \\ 277 & 112 & 1.257 \\ 277 & 001 & 2.242 \\ 277 & 112 & 1.257 \\ 277 & 001 & 2.242 \\ 278 & 000 & 2.486 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 278 & 000 & 4.336 \\ 288 & 000 & 4.336 \\ 288 & 000 & 4.336 \\ 288 & 000 & 4.386 \\ 288 & 000 & 4.386 \\ 288 & 000 & 3.264 \\ 288 & 000 & 3.264 \\ 288 & 000 & 3.264 \\ 288 & 000 & 3.264 \\ 288 & 000 & 3.264 \\ 288 & 000 & 3.264 \\ 288 & 000 & 3.264 \\ 288 & 000 & 3.264 \\ 288 & 000000000000000000000000000000000$	264	112 3.285	-3.914	0.0000E+000.0000E+0070.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	264	112 2.839	-4.303	0.0000E+000.0000E+0070.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	267		-4.565	C.0000E+000,0000E+00 C.0000E+000,0000E+00
$\begin{array}{c} \frac{1}{277} & 112 & 1.252 & -4.625 \\ 277 & 00 & 1.230 & -4.906 & 0.0000E+000.0000E+00 \\ 277 & 00 & 1.242 & -4.906 & 0.0000E+000.0000E+00 \\ 274 & 112 & 1.257 & -5.014 & 0.0000E+000.0000E+00 \\ 275 & 0000.6348 & -5.100 & 0.0000E+000.0000E+00 \\ 277 & 000 & 4.773 &8182 & 0.0000E+000.0000E+00 \\ 278 & 00 & 4.733 &1562 & 0.0000E+000.0000E+00 \\ 279 & 00 & 4.536 & -1.562 & 0.0000E+000.0000E+00 \\ 280 & 00 & 4.536 & -1.562 & 0.0000E+000.0000E+00 \\ 281 & 00 & 3.956 & -2.841 & 0.0000E+000.0000E+00 \\ 285 & 00 & 3.956 & -2.841 & 0.0000E+000.0000E+00 \\ 286 & 00 & 3.956 & -3.856 & 0.0000E+000.0000E+00 \\ 286 & 00 & 3.956 & -3.856 & 0.0000E+000.0000E+00 \\ 286 & 00 & 3.204 & -3.819 & 0.0000E+000.0000E+00 \\ 286 & 00 & 2.294 & -4.857 & 0.0000E+000.0000E+00 \\ 286 & 00 & 2.294 & -4.876 & 0.0000E+000.0000E+00 \\ 286 & 00 & 2.294 & -4.876 & 0.0000E+000.0000E+00 \\ 287 & 00 & 4.523 & -4.876 & 0.0000E+000.0000E+00 \\ 286 & 00 & 2.294 & -4.859 & 0.0000E+000.0000E+00 \\ 286 & 00 & 2.294 & -4.859 & 0.0000E+000.0000E+00 \\ 297 & 00 & 4.523 & -4.876 & 0.0000E+000.0000E+00 \\ 297 & 00 & 4.523 & -4.876 & 0.0000E+000.0000E+00 \\ 297 & 00 & 4.523 & -4.876 & 0.0000E+000.0000E+00 \\ 297 & 00 & 4.522 & -4.858 & 0.0000E+000.0000E+00 \\ 297 & 00 & 3.920 & -2.815 & 0.0000E+000.0000E+00 \\ 297 & 00 & 3.920 & -2.815 & 0.0000E+000.0000E+00 \\ 297 & 00 & 3.920 & -2.823 & 0.0000E+000.0000E+00 \\ 297 & 00 & 3.920 & -2.823 & 0.0000E+000.0000E+00 \\ 297 & 00 & 3.920 & -2.815 & 0.0000E+000.0000E+00 \\ 297 & 00 & 3.920 & -2.823 & 0.0000E+000.0000E+00 \\ 297 & 00 & 3.920 & -2.823 & 0.0000E+000.0000E+00 \\ 297 & 00 & 3.921 & -3.784 & 0.0000E+000.0000E+00 \\ 301 & 00 & 3.185 & -3.784 & 0.0000E+000.0000E+00 \\ 303 & 00 & 2.274 & -4.462 & 0.0000E+000.0000E+00 \\ 304 & 00 & 3.185 & -3.784 & 0.0000E+000.0000E+00 \\ 305 & 00 & 1.215 & -4.847 & 0.0000E+000.0000E+00 \\ 306 & 00 & 1.215 & -4.847 & 0.0000E+000.0000E+00 \\ 306 & 00 & 1.215 & -4.847 & 0.0000E+000.0000E+00 \\ 306 & 00 & 0.275 & -4.930 & 0.0000E+000.0000E+00 \\ 306 & 00 & 0.275 & -4.930 & 0.0000E+000.0000E+00 \\ 306 & 00 & 0.2$	269	112 2.352	-4.615	0,0000E+000,0000E+0070.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	źźi	112 1.625	-4.852	0.000CE+000.0000E+0070.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	273	00 1.242	-4.760	0.0000E+000.0000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	274	112 1.257	-5.014	0.0000E+000.0000E+0070.0 0.0000E+000.0000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	272	1120.6466	-5,100	0.0000E+000.0000E+0070.0 0.0000E+000.0000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	278	00 4.536	-1.567	0.0000E+000.0000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	279	00 4.550	-2.234	0.0000E+000.0000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	281	00 3.944	-2.832	0.0000E+000.0000E+00 0.0000E+000.0000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	263	00 3.587	-3.356	0.0000E+000.0000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	285	00 3.204	-3.819	0.0000E+000.0000E+00
266 00 2.294 -4.502 $0.0000E+000.0000E+000$ 289 00 1.775 -4.719 $0.0000E+000.0000E+000$ 291 00 1.223 -4.876 $0.0000E+000.0000E+000$ 291 00 1.224 -4.891 $0.0000E+000.0000E+000$ 292 000.6310 -4.960 $0.0000E+000.0000E+000$ 293 00 4.744 -8132 $0.0000E+000.0000E+000$ 293 00 4.744 -8132 $0.0000E+000.0000E+000$ 2974 00 4.522 -1.553 $0.0000E+000.0000E+000$ 2975 00 4.524 -2.221 $0.0000E+000.0000E+000$ 296 00 3.932 -2.815 $0.0000E+000.0000E+000$ 298 00 3.932 -2.823 $0.0000E+000.0000E+000$ 298 00 3.567 -3.336 $0.0000E+000.0000E+000$ 301 00 3.185 -3.7964 $0.0000E+000.0000E+000$ 301 00 2.221 -4.475 $0.0000E+000.0000E+000$ 304 00 2.221 -4.847 $0.0000E+000.0000E+000$ 304 00 2.221 -4.8475 $0.0000E+000.0000E+000$ 306 00 1.215 -4.847 $0.0000E+000.0000E+000$ 308 00	286	00 2.761	-4.185	0.0000E+000.0000E+00 0.0000E+000.0000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	365	00 2.294	-4.502	0.0000E+000.0000E+00 0.0000E+000.0000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	290	00 1.223	-4.876	Q.QOODE+000.QOODE+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	292	-000,6310	-4.960	0.0000E+000.0000E+00
265 00 4.522 -1.558 0.0000E+000.0000E+000 266 00 4.234 -2.221 0.0000E+000.0000E+000 276 00 3.920 -2.815 0.0000E+000.0000E+000 278 00 3.932 -2.923 0.0000E+000.0000E+000 300 00 3.567 -3.336 0.0000E+000.0000E+000 301 00 3.185 -3.794 0.0000E+000.0000E+000 302 00 2.744 -4.159 0.0000E+000.0000E+000 303 00 2.221 -4.462 0.0000E+000.0000E+000 303 00 2.221 -4.462 0.0000E+000.0000E+000 304 00 2.221 -4.462 0.0000E+000.0000E+000 305 00 1.215 -4.847 0.0000E+000.0000E+000 306 00 1.215 -4.847 0.0000E+000.0000E+000 308 000.6272 -4.930 0.0000E+000.0000E+000 308 000.4272 -4.930 0.0000E+000.0000E+000	293	00 4.744	8132	0.0000E+000.0000E+00 -0.0000E+000.0000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	255	00 4.572	-1-558	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	297	00 3.920	-2.815	0.0000E+000.0000E+00
300 30 3175 -3.784 0.0000E+000.0000E+00 301 00 3.185 -3.796 0.0000E+000.0000E+00 302 00 2.744 -4.159 0.0000E+000.0000E+00 303 00 2.274 -4.462 0.0000E+000.0000E+00 304 00 2.281 -4.475 0.0000E+000.0000E+00 305 00 1.764 -4.691 0.0000E+000.0000E+00 306 00 1.215 -4.847 0.0000E+000.0000E+00 307 00 3.219 -4.862 0.0000E+000.0000E+00 308 000.6272 -4.930 0.0000E+000.0000E+00 308 000.4272 -4.930 0.0000E+000.0000E+00	298	00 3.932	-2.823	0.0000E+000.0000E+00 0.0000E+000.0000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300	00 3.175	-3.784	0,0000E+000,0000E+00 0,0000E+000,0000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	302	00 2.744	-4.159	0.0000E+000.0000E+00
305 00 1.764 -4.691 0.00000000000000000000000000000000000	303 304	00 2.274 00 2.281	-4.462	0.0000E+000.0000E+00
307 00 1.219 -4.862 0.0000E+000.0000E+00 308 000.6272 -4.930 0.0000E+000.0000E+00 308 000.4272 -4.930 0.0000E+000.0000E+00	3 ČS	00 1.764	-4.691	0,0000E+000,0000E+00 0,0000E+000,0000E+00
308 000.6272 -4.930 0.0000E+000.0000E+00 709 00 4 715 - P0P3 0.0000E+000.0000E+00	307		-4.862	Ŏ.ŎŎŎŎĔŦŎŎŎ.ŎŎŎŎĔŦŎŎ
	301	8 000.6272 9 00 4.715	- . 8083	0.0000E+000.0000E+00
310 00 4.481 -1.544 0.0000E+000.0000E+00 311 00 4.495 -1.549 0.0000E+000.0000E+00	31 31	0 00 4.481 1 00 4.495	-1.549	0.0000E+000.0000E+00 0.0000E+000.0000E+00

1

i

. .

70707036147058140,00861664702661881440362454947147035925

i

ORIGINAL PAGE IS OF POOR QUALITY

14 203 6466 6668777777777778888888888899999999999
920814700301230149494201707018814707470269036920692111128 920814700372301494942017072101222247010287213333333 9208147003721230149494201707212022299900027111128 92081470037212335566717222222222222222222222222222222222
Auconocialization
11112000011112000000000000000000000000
57147227517517777777222222551517581476147036703694 0111127523534488536727885515950991112227233334 8137036515534488536727885515976991112227233334
21122422222222222222222222222222222222
58147.0369456147638383874995810581476147036970333 58147.0369456147638447554676688959560031110044633838 58147.036945614763883874995810581476147036470388
11111000111111100000000000000000000000
אויאפע לער לטוויונוגוגוון, וטטערע לעריו עטאנאנאנאנאטעעעעעעעעעעע
ແນວຢາຍທີ່ທີ່ມີຢາຍ ທີ່ເຈົ້າມີນີ້ນຳມາຍາຍາຍາຍາຍາຍາຍາຍາຍາຍາຍາຍາຍາຍາຍາຍາຍາຍາຍ

Â.

45

٠

i

.

.

PUBLICATIONS

NASA Grant NAG3-369

- R. L. Mullen and R. C. Hendricks, "A 3-Body Approach to Friction Contact Modelling", to be presented 22nd Annual Meeting of the Society of Engineering Sciences, Pennsylvania State University, University Park, October, 1985.
- R. C. Hendricks, M. J. Braun, R. L. Wheeler III and R. L. Mullen "Two-Phase Flows With Ambient Pressure above the Thermodynamic Critical Pressure", Bently Roter Dynamics Research Symposium of Instability in Rotating Machinery, Carson City NV, 1985.
- R. C. Hendricks, M. J. Braun , R. L. Mullen, R. E. Bucham and W. A. Diamond, "Analysis of Experimental Shaft Seal Data for High-Performance Turbomachines As for Space Shuttle Main Engines", Proceedings Workshop on Heat and Mass Transfer in Rotating Systems, 1985.
- M. J. 'Braun, R. L. Mullen, Andre Prekwas and R. C. Hendricks, "Finite Difference Solution for a Generalized Reynolds Equation with Homogeneous Two-Phase Flow", Proceedings Workshop on Heat and Mass Transfer in Rotating Systems, ASME,1985.
- R. L. Mullen, Andre Prekwas, M. J. Braun and R. C. Hendricks, "Finite Element and Finite Difference Methods for a Reynolds Equation using a Power Law Fluid", Workshop on Heat and Mass Transfer in Rotating Systems, ASME, 1985.
- R.L. Mullen, R.C. Hendricks, G. McDonald, "Finite Element Analysis of Residual Stresses in Plasma-Sprayed Ceramics", 9th Annual Conference on Composites and Advanced Ceramic Materials, 1985 (Also in press, Ceramic Engineering and Science Proceedings) 1985.
- Robert L. Mullen, M.J. Braun and R.C. Hendricks "Finite Element Solutions for the Stiffness and Damping of A Three-Dimensional Journal Bearing Using a Non-Newtonian Fluid" Proceedings of the 10th Canadian Congress of Applied Mechanics Volume 2 pp. E-23,London, Qntario, 1985.
- M.J. Braun, R.L. Mullen, R.C. Hendricks, Robert L. Wheeler, "Fluid Flow and Heat Transfer in Annuli with Axial Pressure Gradient a Non-Isothermal Rotating Inner Cylinder and an Insulated Outer Cylinder", to be presented at the 1985 ASME National Heat Transfer Conference, 1985.
- R. L. Mullen, "Quasi Eulerian Formulation of Thermal Elastic Contact Problem Involving Moving Loads". Presented Winter Annual Meeting ASME, 1984.

- ---/16

- M. J. Braun, M. L. Adams, and R. L. Mullen, "Analysis of a Two Row Hydrostatic Journal Bearing with Variable Properties Inertia Effects and Surface Roughness". To be published Israel J. Of Technology and presented at 18th Israel Conference on Mechanical Engineering, June 27, 1984 Haifa.
- J. Padovan, B. Chung, M. J. Braun, R. L. Mullen "An Improved Plastic Flow Thermomechanical Algorithm and Heat-Transfer Analysis for Plasma-Sprayed Ceramics", 8th Annual Conference on Composites and Advance Ceramic Materials, American Ceramic Society, 1984. To be published Ceramic Engineering & Science Proceedings.
- R. L. Mullen, M. J. Braun, and R. C. Hendricks, "Finite Element Formulation of a Reynolds Type Equation for a Power Law Fluid", presented, Fifth International Symposium on Finite Element Methods in Flow Problems, Austin Texas, 1984.
- M. J. Braun, R. C. Hendricks, and R. L. Mullen, "Studies of Two Phase Flow in Hydrostatic Journal Bearings", 7th Annual Energy Sources Conference, Cavitation and Multi-Phase Flow, FED-9 ASME, pp. 61-65, 1984.
- M. J. Braun, R. L. Mullen, and R. C. Hendricks,"A Parametric Study of Pressure and Temperature in a Narrow Gap Between a Stationary Outer Cylinder and an Inner Rotating Mis-aligned Shaft", presented National Heat Transfer Conference, 1984.
- M. J. Braun, R. L. Mullen, and R. C. Hendricks, "A Three Dimensional Numerical Method with Applications to Tribological Problems", Proceedings of the 10th Leeds-Lyon Symposium on Tribology, 1983.
- R. L. Mullen and R. C. Hendricks, "Finite Element Formulation for Transient Heat Treat Problems", ASME-JSME Thermal Engineering Joint Conference Proceedings, Volume 3, 1983, pp. 367-374.(also NASA Technical Memorandum 83070).